Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Med Intensiva (Engl Ed) ; 48(6): 326-340, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38462398

RESUMEN

OBJECTIVE: To validate the unsupervised cluster model (USCM) developed during the first pandemic wave in a cohort of critically ill patients from the second and third pandemic waves. DESIGN: Observational, retrospective, multicentre study. SETTING: Intensive Care Unit (ICU). PATIENTS: Adult patients admitted with COVID-19 and respiratory failure during the second and third pandemic waves. INTERVENTIONS: None. MAIN VARIABLES OF INTEREST: Collected data included demographic and clinical characteristics, comorbidities, laboratory tests and ICU outcomes. To validate our original USCM, we assigned a phenotype to each patient of the validation cohort. The performance of the classification was determined by Silhouette coefficient (SC) and general linear modelling. In a post-hoc analysis we developed and validated a USCM specific to the validation set. The model's performance was measured using accuracy test and area under curve (AUC) ROC. RESULTS: A total of 2330 patients (mean age 63 [53-82] years, 1643 (70.5%) male, median APACHE II score (12 [9-16]) and SOFA score (4 [3-6]) were included. The ICU mortality was 27.2%. The USCM classified patients into 3 clinical phenotypes: A (n = 1206 patients, 51.8%); B (n = 618 patients, 26.5%), and C (n = 506 patients, 21.7%). The characteristics of patients within each phenotype were significantly different from the original population. The SC was -0.007 and the inclusion of phenotype classification in a regression model did not improve the model performance (0.79 and 0.78 ROC for original and validation model). The post-hoc model performed better than the validation model (SC -0.08). CONCLUSION: Models developed using machine learning techniques during the first pandemic wave cannot be applied with adequate performance to patients admitted in subsequent waves without prior validation.


Asunto(s)
COVID-19 , Enfermedad Crítica , Unidades de Cuidados Intensivos , Humanos , COVID-19/epidemiología , Masculino , Femenino , Persona de Mediana Edad , Estudios Retrospectivos , Anciano , Anciano de 80 o más Años , Unidades de Cuidados Intensivos/estadística & datos numéricos , Pandemias , Análisis por Conglomerados , APACHE , Mortalidad Hospitalaria , SARS-CoV-2 , Insuficiencia Respiratoria , Puntuaciones en la Disfunción de Órganos
2.
BMC Anesthesiol ; 23(1): 140, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37106321

RESUMEN

BACKGROUND: The optimal time to intubate patients with SARS-CoV-2 pneumonia has not been adequately determined. While the use of non-invasive respiratory support before invasive mechanical ventilation might cause patient-self-induced lung injury and worsen the prognosis, non-invasive ventilation (NIV) is frequently used to avoid intubation of patients with acute respiratory failure (ARF). We hypothesized that delayed intubation is associated with a high risk of mortality in COVID-19 patients. METHODS: This is a secondary analysis of prospectively collected data from adult patients with ARF due to COVID-19 admitted to 73 intensive care units (ICUs) between February 2020 and March 2021. Intubation was classified according to the timing of intubation. To assess the relationship between early versus late intubation and mortality, we excluded patients with ICU length of stay (LOS) < 7 days to avoid the immortal time bias and we did a propensity score and a cox regression analysis. RESULTS: We included 4,198 patients [median age, 63 (54‒71) years; 71% male; median SOFA (Sequential Organ Failure Assessment) score, 4 (3‒7); median APACHE (Acute Physiology and Chronic Health Evaluation) score, 13 (10‒18)], and median PaO2/FiO2 (arterial oxygen pressure/ inspired oxygen fraction), 131 (100‒190)]; intubation was considered very early in 2024 (48%) patients, early in 928 (22%), and late in 441 (10%). ICU mortality was 30% and median ICU stay was 14 (7‒28) days. Mortality was higher in the "late group" than in the "early group" (37 vs. 32%, p < 0.05). The implementation of an early intubation approach was found to be an independent protective risk factor for mortality (HR 0.6; 95%CI 0.5‒0.7). CONCLUSIONS: Early intubation within the first 24 h of ICU admission in patients with COVID-19 pneumonia was found to be an independent protective risk factor of mortality. TRIAL REGISTRATION: The study was registered at Clinical-Trials.gov (NCT04948242) (01/07/2021).


Asunto(s)
COVID-19 , Neumonía , Síndrome de Dificultad Respiratoria , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , COVID-19/terapia , Enfermedad Crítica/terapia , Mortalidad Hospitalaria , Unidades de Cuidados Intensivos , Intubación Intratraqueal , Oxígeno , Respiración Artificial , Estudios Retrospectivos , SARS-CoV-2
3.
J Infect ; 85(4): 374-381, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35781017

RESUMEN

BACKGROUND: Procalcitonin (PCT) and C-Reactive Protein (CRP) are useful biomarkers to differentiate bacterial from viral or fungal infections, although the association between them and co-infection or mortality in COVID-19 remains unclear. METHODS: The study represents a retrospective cohort study of patients admitted for COVID-19 pneumonia to 84 ICUs from ten countries between (March 2020-January 2021). Primary outcome was to determine whether PCT or CRP at admission could predict community-acquired bacterial respiratory co-infection (BC) and its added clinical value by determining the best discriminating cut-off values. Secondary outcome was to investigate its association with mortality. To evaluate the main outcome, a binary logistic regression was performed. The area under the curve evaluated diagnostic performance for BC prediction. RESULTS: 4635 patients were included, 7.6% fulfilled BC diagnosis. PCT (0.25[IQR 0.1-0.7] versus 0.20[IQR 0.1-0.5]ng/mL, p<0.001) and CRP (14.8[IQR 8.2-23.8] versus 13.3 [7-21.7]mg/dL, p=0.01) were higher in BC group. Neither PCT nor CRP were independently associated with BC and both had a poor ability to predict BC (AUC for PCT 0.56, for CRP 0.54). Baseline values of PCT<0.3ng/mL, could be helpful to rule out BC (negative predictive value 91.1%) and PCT≥0.50ng/mL was associated with ICU mortality (OR 1.5,p<0.001). CONCLUSIONS: These biomarkers at ICU admission led to a poor ability to predict BC among patients with COVID-19 pneumonia. Baseline values of PCT<0.3ng/mL may be useful to rule out BC, providing clinicians a valuable tool to guide antibiotic stewardship and allowing the unjustified overuse of antibiotics observed during the pandemic, additionally PCT≥0.50ng/mL might predict worsening outcomes.


Asunto(s)
Infecciones Bacterianas , COVID-19 , Coinfección , Polipéptido alfa Relacionado con Calcitonina , Infecciones del Sistema Respiratorio , Infecciones Bacterianas/diagnóstico , Biomarcadores , Proteína C-Reactiva/análisis , COVID-19/diagnóstico , Coinfección/diagnóstico , Humanos , Valor Predictivo de las Pruebas , Curva ROC , Estudios Retrospectivos
4.
Lancet Reg Health Eur ; 11: 100243, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34751263

RESUMEN

BACKGROUND: It is unclear whether the changes in critical care throughout the pandemic have improved the outcomes in coronavirus disease 2019 (COVID-19) patients admitted to the intensive care units (ICUs). METHODS: We conducted a retrospective cohort study in adults with COVID-19 pneumonia admitted to 73 ICUs from Spain, Andorra and Ireland between February 2020 and March 2021. The first wave corresponded with the period from February 2020 to June 2020, whereas the second/third waves occurred from July 2020 to March 2021. The primary outcome was ICU mortality between study periods. Mortality predictors and differences in mortality between COVID-19 waves were identified using logistic regression. FINDINGS: As of March 2021, the participating ICUs had included 3795 COVID-19 pneumonia patients, 2479 (65·3%) and 1316 (34·7%) belonging to the first and second/third waves, respectively. Illness severity scores predicting mortality were lower in the second/third waves compared with the first wave according with the Acute Physiology and Chronic Health Evaluation system (median APACHE II score 12 [IQR 9-16] vs 14 [IQR 10-19]) and the organ failure assessment score (median SOFA 4 [3-6] vs 5 [3-7], p<0·001). The need of invasive mechanical ventilation was high (76·1%) during the whole study period. However, a significant increase in the use of high flow nasal cannula (48·7% vs 18·2%, p<0·001) was found in the second/third waves compared with the first surge. Significant changes on treatments prescribed were also observed, highlighting the remarkable increase on the use of corticosteroids to up to 95.9% in the second/third waves. A significant reduction on the use of tocilizumab was found during the study (first wave 28·9% vs second/third waves 6·2%, p<0·001), and a negligible administration of lopinavir/ritonavir, hydroxychloroquine, and interferon during the second/third waves compared with the first wave. Overall ICU mortality was 30·7% (n = 1166), without significant differences between study periods (first wave 31·7% vs second/third waves 28·8%, p = 0·06). No significant differences were found in ICU mortality between waves according to age subsets except for the subgroup of 61-75 years of age, in whom a reduced unadjusted ICU mortality was observed in the second/third waves (first 38·7% vs second/third 34·0%, p = 0·048). Non-survivors were older, with higher severity of the disease, had more comorbidities, and developed more complications. After adjusting for confounding factors through a multivariable analysis, no significant association was found between the COVID-19 waves and mortality (OR 0·81, 95% CI 0·64-1·03; p = 0·09). Ventilator-associated pneumonia rate increased significantly during the second/third waves and it was independently associated with ICU mortality (OR 1·48, 95% CI 1·19-1·85, p<0·001). Nevertheless, a significant reduction both in the ICU and hospital length of stay in survivors was observed during the second/third waves. INTERPRETATION: Despite substantial changes on supportive care and management, we did not find significant improvement on case-fatality rates among critical COVID-19 pneumonia patients. FUNDING: Ricardo Barri Casanovas Foundation (RBCF2020) and SEMICYUC.

5.
Crit Care ; 25(1): 63, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33588914

RESUMEN

BACKGROUND: The identification of factors associated with Intensive Care Unit (ICU) mortality and derived clinical phenotypes in COVID-19 patients could help for a more tailored approach to clinical decision-making that improves prognostic outcomes. METHODS: Prospective, multicenter, observational study of critically ill patients with confirmed COVID-19 disease and acute respiratory failure admitted from 63 ICUs in Spain. The objective was to utilize an unsupervised clustering analysis to derive clinical COVID-19 phenotypes and to analyze patient's factors associated with mortality risk. Patient features including demographics and clinical data at ICU admission were analyzed. Generalized linear models were used to determine ICU morality risk factors. The prognostic models were validated and their performance was measured using accuracy test, sensitivity, specificity and ROC curves. RESULTS: The database included a total of 2022 patients (mean age 64 [IQR 5-71] years, 1423 (70.4%) male, median APACHE II score (13 [IQR 10-17]) and SOFA score (5 [IQR 3-7]) points. The ICU mortality rate was 32.6%. Of the 3 derived phenotypes, the A (mild) phenotype (537; 26.7%) included older age (< 65 years), fewer abnormal laboratory values and less development of complications, B (moderate) phenotype (623, 30.8%) had similar characteristics of A phenotype but were more likely to present shock. The C (severe) phenotype was the most common (857; 42.5%) and was characterized by the interplay of older age (> 65 years), high severity of illness and a higher likelihood of development shock. Crude ICU mortality was 20.3%, 25% and 45.4% for A, B and C phenotype respectively. The ICU mortality risk factors and model performance differed between whole population and phenotype classifications. CONCLUSION: The presented machine learning model identified three clinical phenotypes that significantly correlated with host-response patterns and ICU mortality. Different risk factors across the whole population and clinical phenotypes were observed which may limit the application of a "one-size-fits-all" model in practice.


Asunto(s)
COVID-19/mortalidad , COVID-19/terapia , Anciano , Análisis por Conglomerados , Enfermedad Crítica , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fenotipo , Medición de Riesgo , Factores de Riesgo , España/epidemiología
6.
Physiol Meas ; 40(8): 084001, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31292285

RESUMEN

OBJECTIVE: Interest in emotion recognition has increased in recent years as a useful tool for diagnosing psycho-neural illnesses. In this study, the auto-mutual and the cross-mutual information function, AMIF and CMIF respectively, are used for human emotion recognition. APPROACH: The AMIF technique was applied to heart rate variability (HRV) signals to study complex interdependencies, and the CMIF technique was considered to quantify the complex coupling between HRV and respiratory signals. Both algorithms were adapted to short-term RR time series. Traditional band pass filtering was applied to the RR series at low frequency (LF) and high frequency (HF) bands, and a respiration-based filter bandwidth was also investigated ([Formula: see text]). Both the AMIF and the CMIF algorithms were calculated with regard to different time scales as specific complexity measures. The ability of the parameters derived from the AMIF and the CMIF to discriminate emotions was evaluated on a database of video-induced emotion elicitation. Five elicited states i.e. relax (neutral), joy (positive valence), as well as fear, sadness and anger (negative valences) were considered. MAIN RESULTS: The results revealed that the AMIF applied to the RR time series filtered in the [Formula: see text] band was able to discriminate between the following: relax and joy and fear, joy and each negative valence conditions, and finally fear and sadness and anger, all with a statistical significance level p -value [Formula: see text] 0.05, sensitivity, specificity and accuracy higher than 70% and area under the receiver operating characteristic curve index AUC [Formula: see text]0.70. Furthermore, the parameters derived from the AMIF and the CMIF allowed the low signal complexity presented during fear to be characterized in front of any of the studied elicited states. SIGNIFICANCE: Based on these results, human emotion manifested in the HRV and respiratory signal responses could be characterized by means of the information-content complexity.


Asunto(s)
Emociones/fisiología , Frecuencia Cardíaca , Respiración , Electrocardiografía , Voluntarios Sanos , Humanos , Procesamiento de Señales Asistido por Computador
7.
IEEE J Biomed Health Inform ; 23(6): 2446-2454, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30703049

RESUMEN

Developing a tool that identifies emotions based on their effect on cardiac activity may have a potential impact on clinical practice, since it may help in the diagnosing of psycho-neural illnesses. In this study, a method based on the analysis of heart rate variability (HRV) guided by respiration is proposed. The method was based on redefining the high frequency (HF) band, not only to be centered at the respiratory frequency, but also to have a bandwidth dependent on the respiratory spectrum. The method was first tested using simulated HRV signals, yielding the minimum estimation errors as compared to classic and respiratory frequency centered at HF band based definitions, independently of the values of the sympathovagal ratio. Then, the proposed method was applied to discriminate emotions in a database of video-induced elicitation. Five emotional states, relax, joy, fear, sadness, and anger, were considered. The maximum correlation between HRV and respiration spectra discriminated joy versus relax, joy versus each negative valence emotion, and fear versus sadness with p-value ≤ 0.05 and AUC ≥ 0.70. Based on these results, human emotion characterization may be improved by adding respiratory information to HRV analysis.


Asunto(s)
Emociones/clasificación , Frecuencia Cardíaca/fisiología , Frecuencia Respiratoria/fisiología , Procesamiento de Señales Asistido por Computador , Adolescente , Adulto , Sistema Nervioso Autónomo/fisiología , Electrocardiografía/métodos , Emociones/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
8.
Entropy (Basel) ; 21(6)2019 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-33267319

RESUMEN

Rheoencephalography (REG) is a simple and inexpensive technique that intends to monitor cerebral blood flow (CBF), but its ability to reflect CBF changes has not been extensively proved. Based on the hypothesis that alterations in CBF during apnea should be reflected in REG signals under the form of increased complexity, several entropy metrics were assessed for REG analysis during apnea and resting periods in 16 healthy subjects: approximate entropy (ApEn), sample entropy (SampEn), fuzzy entropy (FuzzyEn), corrected conditional entropy (CCE) and Shannon entropy (SE). To compute these entropy metrics, a set of parameters must be defined a priori, such as, for example, the embedding dimension m, and the tolerance threshold r. A thorough analysis of the effects of parameter selection in the entropy metrics was performed, looking for the values optimizing differences between apnea and baseline signals. All entropy metrics, except SE, provided higher values for apnea periods (p-values < 0.025). FuzzyEn outperformed all other metrics, providing the lowest p-value (p = 0.0001), allowing to conclude that REG signals during apnea have higher complexity than in resting periods. Those findings suggest that REG signals reflect CBF changes provoked by apneas, even though further studies are needed to confirm this hypothesis.

9.
Entropy (Basel) ; 21(7)2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-33267420

RESUMEN

The refined multiscale entropy (RMSE) approach is commonly applied to assess complexity as a function of the time scale. RMSE is normally based on the computation of sample entropy (SampEn) estimating complexity as conditional entropy. However, SampEn is dependent on the length and standard deviation of the data. Recently, fuzzy entropy (FuzEn) has been proposed, including several refinements, as an alternative to counteract these limitations. In this work, FuzEn, translated FuzEn (TFuzEn), translated-reflected FuzEn (TRFuzEn), inherent FuzEn (IFuzEn), and inherent translated FuzEn (ITFuzEn) were exploited as entropy-based measures in the computation of RMSE and their performance was compared to that of SampEn. FuzEn metrics were applied to synthetic time series of different lengths to evaluate the consistency of the different approaches. In addition, electroencephalograms of patients under sedation-analgesia procedure were analyzed based on the patient's response after the application of painful stimulation, such as nail bed compression or endoscopy tube insertion. Significant differences in FuzEn metrics were observed over simulations and real data as a function of the data length and the pain responses. Findings indicated that FuzEn, when exploited in RMSE applications, showed similar behavior to SampEn in long series, but its consistency was better than that of SampEn in short series both over simulations and real data. Conversely, its variants should be utilized with more caution, especially whether processes exhibit an important deterministic component and/or in nociception prediction at long scales.

10.
PLoS One ; 13(12): e0208642, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30532232

RESUMEN

OBJECTIVE: Rheoencephalography is a simple and inexpensive technique for cerebral blood flow assessment, however, it is not used in clinical practice since its correlation to clinical conditions has not yet been extensively proved. The present study investigates the ability of Poincaré Plot descriptors from rheoencephalography signals to detect apneas in volunteers. METHODS: A group of 16 subjects participated in the study. Rheoencephalography data from baseline and apnea periods were recorded and Poincaré Plot descriptors were extracted from the reconstructed attractors with different time lags (τ). Among the set of extracted features, those presenting significant differences between baseline and apnea recordings were used as inputs to four different classifiers to optimize the apnea detection. RESULTS: Three features showed significant differences between apnea and baseline signals: the Poincaré Plot ratio (SDratio), its correlation (R) and the Complex Correlation Measure (CCM). Those differences were optimized for time lags smaller than those recommended in previous works for other biomedical signals, all of them being lower than the threshold established by the position of the inflection point in the CCM curves. The classifier showing the best performance was the classification tree, with 81% accuracy and an area under the curve of the receiver operating characteristic of 0.927. This performance was obtained using a single input parameter, either SDratio or R. CONCLUSIONS: Poincaré Plot features extracted from the attractors of rheoencephalographic signals were able to track cerebral blood flow changes provoked by breath holding. Even though further validation with independent datasets is needed, those results suggest that nonlinear analysis of rheoencephalography might be a useful approach to assess the correlation of cerebral impedance with clinical changes.


Asunto(s)
Apnea/diagnóstico por imagen , Circulación Cerebrovascular , Reología/métodos , Procesamiento de Señales Asistido por Computador , Adulto , Algoritmos , Apnea/fisiopatología , Área Bajo la Curva , Femenino , Humanos , Masculino , Curva ROC
11.
Methods Inf Med ; 57(1): e1-e9, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29475204

RESUMEN

OBJECTIVE: This works investigates the time-frequency content of impedance cardiography signals during a propofol-remifentanil anesthesia. MATERIALS AND METHODS: In the last years, impedance cardiography (ICG) is a technique which has gained much attention. However, ICG signals need further investigation. Time-Frequency Distributions (TFDs) with 5 different kernels are used in order to analyze impedance cardiography signals (ICG) before the start of the anesthesia and after the loss of consciousness. In total, ICG signals from one hundred and thirty-one consecutive patients undergoing major surgery under general anesthesia were analyzed. Several features were extracted from the calculated TFDs in order to characterize the time-frequency content of the ICG signals. Differences between those features before and after the loss of consciousness were studied. RESULTS: The Extended Modified Beta Distribution (EMBD) was the kernel for which most features shows statistically significant changes between before and after the loss of consciousness. Among all analyzed features, those based on entropy showed a sensibility, specificity and area under the curve of the receiver operating characteristic above 60%. CONCLUSION: The anesthetic state of the patient is reflected on linear and non-linear features extracted from the TFDs of the ICG signals. Especially, the EMBD is a suitable kernel for the analysis of ICG signals and offers a great range of features which change according to the patient's anesthesia state in a statistically significant way.


Asunto(s)
Algoritmos , Anestesia , Cardiografía de Impedancia , Procesamiento de Señales Asistido por Computador , Área Bajo la Curva , Entropía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Curva ROC , Termodinámica , Factores de Tiempo
12.
J Clin Monit Comput ; 31(6): 1273-1281, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27766525

RESUMEN

The objective of this work is to compare the performances of two electroencephalogram based indices for detecting loss of consciousness and loss of response to nociceptive stimulation. Specifically, their behaviour after drug induction and during recovery of consciousness was pointed out. Data was recorded from 140 patients scheduled for general anaesthesia with a combination of propofol and remifentanil. The qCON 2000 monitor (Quantium Medical, Barcelona, Spain) was used to calculate the qCON and qNOX. Loss of response to verbal command and loss of eye-lash reflex were assessed during the transition from awake to anesthetized, defining the state of loss of consciousness. Movement as a response to laryngeal mask (LMA) insertion was interpreted as the response to the nociceptive stimuli. The patients were classified as movers or non-movers. The values of qCON and qNOX were statistically compared. Their fall times and rise times defined at the start and at the end of the surgery were calculated and compared. The results showed that the qCON was able to predict loss of consciousness such as loss of verbal command and eyelash reflex better than qNOX, while the qNOX has a better predictive value for response to noxious stimulation such as LMA insertion. From the analysis of the fall and rise times, it was found that the qNOX fall time (median: 217 s) was significantly longer (p value <0.05) than the qCON fall time (median: 150 s). At the end of the surgery, the qNOX started to increase in median at 45 s before the first annotation related to response to stimuli or recovery of consciousness, while the qCON at 88 s after the first annotation related to response to stimuli or recovery of consciousness (p value <0.05). The indices qCON and qNOX showed different performances in the detection of loss of consciousness and loss of response to stimuli during induction and recovery of consciousness. Furthermore, the qCON showed faster decrease during induction. This behaviour is associated with the hypothesis that the loss of response to stimuli (analgesic effect) might be reached after the loss of consciousness (hypnotic effect). On the contrary, the qNOX showed a faster increase at the end of the surgery, associated with the hypothesis that a higher probability of response to stimuli might be reached before the recovery of consciousness.


Asunto(s)
Anestesiología/métodos , Anestésicos Intravenosos/administración & dosificación , Monitoreo Intraoperatorio/métodos , Piperidinas/administración & dosificación , Propofol/administración & dosificación , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Anestesia General , Parpadeo/efectos de los fármacos , Estado de Conciencia/efectos de los fármacos , Electroencefalografía , Femenino , Humanos , Hipnóticos y Sedantes , Máscaras Laríngeas , Masculino , Persona de Mediana Edad , Nocicepción , Probabilidad , Remifentanilo , Reproducibilidad de los Resultados , Factores de Tiempo , Inconsciencia , Adulto Joven
14.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 6425-6428, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28269717

RESUMEN

Monitoring the levels of sedation-analgesia may be helpful for managing patient stress on minimally invasive medical procedures. Monitors based on EEG analysis and designed to assess general anesthesia cannot distinguish reliably between a light and deep sedation. In this work, the Poincaré plot is used as a nonlinear technique applied to EEG signals in order to characterize the levels of sedation-analgesia, according to observed categorical responses that were evaluated by means of Ramsay Sedation Scale (RSS). To study the effect of high frequencies due to EMG activity, three different frequency ranges (FR1=0.5-110 Hz, FR2=0.5-30 Hz and FR3=30-110 Hz) were considered. Indexes from power spectral analysis and plasma concentration of propofol and remifentanil were also compared with the bispectral index BIS. An adaptive Neurofuzzy Inference System was applied to model the interaction of the best indexes with respect to RSS score for each analysis, and leave-one-out cross validation method was used. The ability of the indexes to describe the level of sedation-analgesia, according with the RSS score, was evaluated using the prediction probability (Pk). The results showed that the ratio SD1/SD2FR3 contains useful information about the sedation level, and SD1FR2 and SD2FR2 had the best performance classifying response to noxious stimuli. Models including parameters from Poincaré plot emerge as a good estimator of sedation-analgesia levels.


Asunto(s)
Anestesia General , Electroencefalografía , Hipnóticos y Sedantes/farmacología , Procesamiento de Señales Asistido por Computador , Dinámicas no Lineales , Dolor , Piperidinas/farmacología , Propofol/farmacología , Remifentanilo
15.
PLoS One ; 10(4): e0122645, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25860587

RESUMEN

AIM: The present study aimed to analyse the autonomic nervous system activity using heart rate variability (HRV) to detect sleep disordered breathing (SDB) patients with and without excessive daytime sleepiness (EDS) before sleep onset. METHODS: Two groups of 20 patients with different levels of daytime sleepiness -sleepy group, SG; alert group, AG- were selected consecutively from a Maintenance of Wakefulness Test (MWT) and Multiple Sleep Latency Test (MSLT) research protocol. The first waking 3-min window of RR signal at the beginning of each nap test was considered for the analysis. HRV was measured with traditional linear measures and with time-frequency representations. Non-linear measures -correntropy, CORR; auto-mutual-information function, AMIF- were used to describe the regularity of the RR rhythm. Statistical analysis was performed with non-parametric tests. RESULTS: Non-linear dynamic of the RR rhythm was more regular in the SG than in the AG during the first wakefulness period of MSLT, but not during MWT. AMIF (in high-frequency and in Total band) and CORR (in Total band) yielded sensitivity > 70%, specificity >75% and an area under ROC curve > 0.80 in classifying SG and AG patients. CONCLUSION: The regularity of the RR rhythm measured at the beginning of the MSLT could be used to detect SDB patients with and without EDS before the appearance of sleep onset.


Asunto(s)
Frecuencia Cardíaca/fisiología , Síndromes de la Apnea del Sueño/diagnóstico , Femenino , Humanos , Masculino , Persona de Mediana Edad , Dinámicas no Lineales , Polisomnografía , Sueño/fisiología , Fases del Sueño , Vigilia/fisiología
16.
PLoS One ; 10(4): e0123464, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25901571

RESUMEN

The level of sedation in patients undergoing medical procedures evolves continuously, affected by the interaction between the effect of the anesthetic and analgesic agents and the pain stimuli. The monitors of depth of anesthesia, based on the analysis of the electroencephalogram (EEG), have been progressively introduced into the daily practice to provide additional information about the state of the patient. However, the quantification of analgesia still remains an open problem. The purpose of this work is to improve the prediction of nociceptive responses with linear and non-linear measures calculated from EEG signal filtered in frequency bands higher than the traditional bands. Power spectral density and auto-mutual information function was applied in order to predict the presence or absence of the nociceptive responses to different stimuli during sedation in endoscopy procedure. The proposed measures exhibit better performances than the bispectral index (BIS). Values of prediction probability of Pk above 0.75 and percentages of sensitivity and specificity above 70% were achieved combining EEG measures from the traditional frequency bands and higher frequency bands.


Asunto(s)
Anestesia , Electroencefalografía , Nocicepción , Dinámicas no Lineales , Femenino , Humanos , Modelos Lineales , Masculino , Persona de Mediana Edad , Dolor/fisiopatología , Procesamiento de Señales Asistido por Computador
17.
Med Eng Phys ; 37(3): 297-308, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25638417

RESUMEN

Excessive daytime sleepiness (EDS) is one of the main symptoms of several sleep related disorders with a great impact on the patient lives. While many studies have been carried out in order to assess daytime sleepiness, the automatic EDS detection still remains an open problem. In this work, a novel approach to this issue based on non-linear dynamical analysis of EEG signal was proposed. Multichannel EEG signals were recorded during five maintenance of wakefulness (MWT) and multiple sleep latency (MSLT) tests alternated throughout the day from patients suffering from sleep disordered breathing. A group of 20 patients with excessive daytime sleepiness (EDS) was compared with a group of 20 patients without daytime sleepiness (WDS), by analyzing 60-s EEG windows in waking state. Measures obtained from cross-mutual information function (CMIF) and auto-mutual-information function (AMIF) were calculated in the EEG. These functions permitted a quantification of the complexity properties of the EEG signal and the non-linear couplings between different zones of the scalp. Statistical differences between EDS and WDS groups were found in ß band during MSLT events (p-value < 0.0001). WDS group presented more complexity than EDS in the occipital zone, while a stronger nonlinear coupling between occipital and frontal zones was detected in EDS patients than in WDS. The AMIF and CMIF measures yielded sensitivity and specificity above 80% and AUC of ROC above 0.85 in classifying EDS and WDS patients.


Asunto(s)
Electroencefalografía , Procesamiento de Señales Asistido por Computador , Trastornos del Sueño-Vigilia/diagnóstico , Trastornos del Sueño-Vigilia/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fases del Sueño , Factores de Tiempo , Vigilia/fisiología
18.
Med Eng Phys ; 37(2): 195-202, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25585858

RESUMEN

The aim of the present study was to investigate the suitability of the Phase-Rectified Signal Averaging (PRSA) method for improved risk prediction in cardiac patients. Moreover, this technique, which separately evaluates acceleration and deceleration processes of cardiac rhythm, allows the effect of sympathetic and vagal modulations of beat-to-beat intervals to be characterized. Holter recordings of idiopathic dilated cardiomyopathy (IDC) patients were analyzed: high-risk (HR), who suffered sudden cardiac death (SCD) during the follow-up; and low-risk (LR), without any kind of cardiac-related death. Moreover, a control group of healthy subjects was analyzed. PRSA indexes were analyzed, for different time scales T and wavelet scales s, from RR series of 24 h-ECG recordings, awake periods and sleep periods. Also, the behavior of these indexes from simulated data was analyzed and compared with real data results. Outcomes demonstrated the PRSA capacity to significantly discriminate healthy subjects from IDC patients and HR from LR patients on a higher level than traditional temporal and spectral measures. The behavior of PRSA indexes agrees with experimental evidences related to cardiac autonomic modulations. Also, these parameters reflect more regularity of the autonomic nervous system (ANS) in HR patients.


Asunto(s)
Cardiomiopatía Dilatada/fisiopatología , Desaceleración , Corazón/fisiología , Corazón/fisiopatología , Procesamiento de Señales Asistido por Computador , Adulto , Cardiomiopatía Dilatada/complicaciones , Cardiomiopatía Dilatada/diagnóstico , Estudios de Casos y Controles , Muerte Súbita Cardíaca , Estudios de Factibilidad , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Medición de Riesgo , Sueño , Vigilia
19.
Philos Trans A Math Phys Eng Sci ; 373(2034)2015 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-25548268

RESUMEN

Myocardial ischaemia is hypothesized to stimulate the cardiac sympathetic excitatory afferents and, therefore, the spontaneous changes of heart period (approximated as the RR interval), and the QT interval in ischaemic dilated cardiomyopathy (IDC) patients might reflect this sympathetic activation. Symbolic analysis is a nonlinear and powerful tool for the extraction and classification of patterns in time-series analysis, which implies a transformation of the original series into symbols and the construction of patterns with the symbols. The aim of this work was to investigate whether symbolic transformations of RR and QT cardiac series can provide a better separation between IDC patients and healthy control (HC) subjects compared with traditional linear measures. The variability of these cardiac series was studied during daytime and night-time periods and also during the complete 24 h recording over windows of short data sequences of approximately 5 min. The IDC group was characterized by an increase in the occurrence rate of patterns without variations (0 V%) and a reduction in the occurrence rate of patterns with one variation (1 V%) and two variations (2 V%). Concerning the RR variability during the daytime, the highest number of patterns had 0 V%, whereas the rates of 1 V% and 2 V% were lower. During the night, 1 V% and 2 V% increased at the expense of diminishing 0 V%. Patterns with and without variations between consecutive symbols were able to increase the separation between the IDC and HC groups, allowing accuracies higher than 80%. With regard to entropy measures, an increase in RR regularity was associated with cardiac disease described by accuracy >70% in the RR series and by accuracy >60% in the QTc series. These results could be associated with an increase in the sympathetic tone in IDC patients.


Asunto(s)
Cardiomiopatía Dilatada/diagnóstico , Corazón/fisiología , Isquemia Miocárdica/diagnóstico , Adulto , Cardiomiopatía Dilatada/fisiopatología , Bases de Datos Factuales , Diagnóstico por Computador , Electrocardiografía , Femenino , Voluntarios Sanos , Frecuencia Cardíaca , Humanos , Masculino , Persona de Mediana Edad , Modelos Estadísticos , Isquemia Miocárdica/fisiopatología , Distribución Normal , Procesamiento de Señales Asistido por Computador , Sistema Nervioso Simpático , Factores de Tiempo
20.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 1797-800, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26736628

RESUMEN

The Shannon entropy theory was applied to the Choi-Williams time-frequency distribution (CWD) of cardiac time series (RR series) in order to extract entropy information in both time and frequency domains. From this distribution, four indexes were defined: (1) instantaneous partial entropy; (2) spectral partial entropy; (3) instantaneous complete entropy; (4) spectral complete entropy. These indexes were used for analyzing the heart rate variability of ischemic cardiomyopathy patients (ICM) with different sudden cardiac death risk. The results have shown that the values of these indexes tend to decrease, with different proportion, when the severity of pathological condition increases. Statistical differences (p-value < 0.0005) of these indexes were found comparing low risk and high risk of cardiac death during night and between daytime and nighttime periods of ICM patients. Finally, these indexes have demonstrated to be useful tools to quantify the different complex components of the cardiac time series.


Asunto(s)
Algoritmos , Entropía , Frecuencia Cardíaca/fisiología , Cardiomiopatías/diagnóstico por imagen , Cardiomiopatías/fisiopatología , Electrocardiografía , Femenino , Humanos , Masculino , Persona de Mediana Edad , Procesamiento de Señales Asistido por Computador , Ultrasonografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...