Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
PeerJ ; 11: e15100, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36992941

RESUMEN

Background: Weight loss effectively reduces cardiometabolic health risks among people with overweight and obesity, but inter-individual variability in weight loss maintenance is large. Here we studied whether baseline gene expression in subcutaneous adipose tissue predicts diet-induced weight loss success. Methods: Within the 8-month multicenter dietary intervention study DiOGenes, we classified a low weight-losers (low-WL) group and a high-WL group based on median weight loss percentage (9.9%) from 281 individuals. Using RNA sequencing, we identified the significantly differentially expressed genes between high-WL and low-WL at baseline and their enriched pathways. We used this information together with support vector machines with linear kernel to build classifier models that predict the weight loss classes. Results: Prediction models based on a selection of genes that are associated with the discovered pathways 'lipid metabolism' (max AUC = 0.74, 95% CI [0.62-0.86]) and 'response to virus' (max AUC = 0.72, 95% CI [0.61-0.83]) predicted the weight-loss classes high-WL/low-WL significantly better than models based on randomly selected genes (P < 0.01). The performance of the models based on 'response to virus' genes is highly dependent on those genes that are also associated with lipid metabolism. Incorporation of baseline clinical factors into these models did not noticeably enhance the model performance in most of the runs. This study demonstrates that baseline adipose tissue gene expression data, together with supervised machine learning, facilitates the characterization of the determinants of successful weight loss.


Asunto(s)
Dieta Reductora , Obesidad , Humanos , Obesidad/genética , Grasa Subcutánea/metabolismo , Pérdida de Peso/genética , Expresión Génica/genética , Lípidos
2.
Nat Commun ; 14(1): 1438, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36922516

RESUMEN

To date, single-cell studies of human white adipose tissue (WAT) have been based on small cohort sizes and no cellular consensus nomenclature exists. Herein, we performed a comprehensive meta-analysis of publicly available and newly generated single-cell, single-nucleus, and spatial transcriptomic results from human subcutaneous, omental, and perivascular WAT. Our high-resolution map is built on data from ten studies and allowed us to robustly identify >60 subpopulations of adipocytes, fibroblast and adipogenic progenitors, vascular, and immune cells. Using these results, we deconvolved spatial and bulk transcriptomic data from nine additional cohorts to provide spatial and clinical dimensions to the map. This identified cell-cell interactions as well as relationships between specific cell subtypes and insulin resistance, dyslipidemia, adipocyte volume, and lipolysis upon long-term weight changes. Altogether, our meta-map provides a rich resource defining the cellular and microarchitectural landscape of human WAT and describes the associations between specific cell types and metabolic states.


Asunto(s)
Tejido Adiposo Blanco , Transcriptoma , Humanos , Transcriptoma/genética , Tejido Adiposo Blanco/metabolismo , Adipocitos/metabolismo , Perfilación de la Expresión Génica , Adipogénesis/genética , Tejido Adiposo
3.
J Clin Endocrinol Metab ; 107(1): e130-e142, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34415992

RESUMEN

CONTEXT: Adipose tissue (AT) transcriptome studies provide holistic pictures of adaptation to weight and related bioclinical settings changes. OBJECTIVE: To implement AT gene expression profiling and investigate the link between changes in bioclinical parameters and AT gene expression during 3 steps of a 2-phase dietary intervention (DI). METHODS: AT transcriptome profiling was obtained from sequencing 1051 samples, corresponding to 556 distinct individuals enrolled in a weight loss intervention (8-week low-calorie diet (LCD) at 800 kcal/day) followed with a 6-month ad libitum randomized DI. Transcriptome profiles obtained with QuantSeq sequencing were benchmarked against Illumina RNAseq. Reverse transcription quantitative polymerase chain reaction was used to further confirm associations. Cell specificity was assessed using freshly isolated cells and THP-1 cell line. RESULTS: During LCD, 5 modules were found, of which 3 included at least 1 bioclinical variable. Change in body mass index (BMI) connected with changes in mRNA level of genes with inflammatory response signature. In this module, change in BMI was negatively associated with changes in expression of genes encoding secreted protein (GDF15, CCL3, and SPP1). Through all phases of the DI, change in GDF15 was connected to changes in SPP1, CCL3, LIPA and CD68. Further characterization showed that these genes were specific to macrophages (with LIPA, CD68 and GDF15 expressed in anti-inflammatory macrophages) and GDF15 also expressed in preadipocytes. CONCLUSION: Network analyses identified a novel AT feature with GDF15 upregulated with calorie restriction induced weight loss, concomitantly to macrophage markers. In AT, GDF15 was expressed in preadipocytes and macrophages where it was a hallmark of anti-inflammatory cells.


Asunto(s)
Tejido Adiposo/patología , Dieta Reductora , Redes Reguladoras de Genes , Factor 15 de Diferenciación de Crecimiento/metabolismo , Obesidad/patología , Transcriptoma , Pérdida de Peso , Tejido Adiposo/metabolismo , Adulto , Biomarcadores/metabolismo , Índice de Masa Corporal , Femenino , Estudios de Seguimiento , Factor 15 de Diferenciación de Crecimiento/genética , Humanos , Masculino , Obesidad/metabolismo , Pronóstico
4.
Am J Clin Nutr ; 114(5): 1752-1762, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34476468

RESUMEN

BACKGROUND: Classical risk factors, such as fasting cholesterol, blood pressure (BP), and diabetes status are used today to predict the risk of developing cardiovascular disease (CVD). However, accurate prediction remains limited, particularly in low-risk groups such as women and younger individuals. Growing evidence suggests that biomarker concentrations following consumption of a meal challenge are better and earlier predictors of disease development than biomarker concentrations. OBJECTIVE: To test the hypothesis that postprandial responses of circulating biomarkers differ between healthy subjects with and without subclinical atherosclerosis (SA) in an Asian population at low risk of coronary artery disease (CAD). METHODS: One hundred healthy Chinese subjects (46 women, 54 men) completed the study. Subjects consumed a mixed-meal test and 164 blood biomarkers were analyzed over 6 h by using a combination of chemical and NMR techniques. Models were trained using different methodologies (including logistic regression, elastic net, random forest, sparse partial least square) on a random 75% subset of the data, and their performance was evaluated on the remaining 25%. RESULTS: We found that models based on baseline clinical parameters or fasting biomarkers could not reliably predict SA. By contrast, an omics model based on magnitude and timing of postprandial biomarkers achieved high performance [receiving operating characteristic (ROC) AUC: 91%; 95% CI: 77, 100). Investigation of key features of this model enabled derivation of a considerably simpler model, solely based on postprandial BP and age, with excellent performance (AUC: 91%; 95% CI: 78, 100). CONCLUSION: We report a novel model to detect SA based on postprandial BP and age in a population of Asian subjects at low risk of CAD. The use of this model in large-scale CVD prevention programs should be explored. This trial was registered at ClinicalTrials.gov as NCT03531879.


Asunto(s)
Aterosclerosis/epidemiología , Periodo Posprandial/fisiología , Adulto , Aterosclerosis/sangre , Aterosclerosis/diagnóstico , Biomarcadores/sangre , Presión Sanguínea , Enfermedad de la Arteria Coronaria/etiología , Enfermedad de la Arteria Coronaria/prevención & control , Estudios Transversales , Femenino , Humanos , Interleucina-6/sangre , Masculino , Persona de Mediana Edad , Inhibidor 1 de Activador Plasminogénico/sangre , Prevalencia
5.
Cell Rep ; 36(8): 109565, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34433037

RESUMEN

Mitochondria constantly undergo fusion and fission events, referred as mitochondrial dynamics, which determine mitochondrial architecture and bioenergetics. Cultured cell studies demonstrate that mitochondrial dynamics are acutely regulated by phosphorylation of the mitochondrial fission orchestrator dynamin-related protein 1 (Drp1) at S579 or S600. However, the physiological impact and crosstalk of these phosphorylation sites is poorly understood. Here, we describe the functional interrelation between S579 and S600 phosphorylation sites in vivo and their role on mitochondrial remodeling. Mice carrying a homozygous Drp1 S600A knockin (Drp1 KI) mutation display larger mitochondria and enhanced lipid oxidation and respiratory capacities, granting improved glucose tolerance and thermogenic response upon high-fat feeding. Housing mice at thermoneutrality blunts these differences, suggesting a role for the brown adipose tissue in the protection of Drp1 KI mice against metabolic damage. Overall, we demonstrate crosstalk between Drp1 phosphorylation sites and provide evidence that their modulation could be used in the treatment and prevention of metabolic diseases.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Dinaminas/metabolismo , Metabolismo de los Lípidos , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Animales , Dinaminas/genética , Ratones , Ratones Noqueados , Mitocondrias/genética , Mutación , Oxidación-Reducción , Fosforilación
6.
Elife ; 102021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33941312

RESUMEN

Extreme longevity is the paradigm of healthy aging as individuals who reached the extreme decades of human life avoided or largely postponed all major age-related diseases. In this study, we sequenced at high coverage (90X) the whole genome of 81 semi-supercentenarians and supercentenarians [105+/110+] (mean age: 106.6 ± 1.6) and of 36 healthy unrelated geographically matched controls (mean age 68.0 ± 5.9) recruited in Italy. The results showed that 105+/110+ are characterized by a peculiar genetic background associated with efficient DNA repair mechanisms, as evidenced by both germline data (common and rare variants) and somatic mutations patterns (lower mutation load if compared to younger healthy controls). Results were replicated in a second independent cohort of 333 Italian centenarians and 358 geographically matched controls. The genetics of 105+/110+ identified DNA repair and clonal haematopoiesis as crucial players for healthy aging and for the protection from cardiovascular events.


Asunto(s)
Hematopoyesis Clonal/genética , Reparación del ADN , Longevidad/genética , Secuenciación Completa del Genoma/estadística & datos numéricos , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Antecedentes Genéticos , Humanos , Italia , Masculino , Persona de Mediana Edad , Mutación , Secuenciación Completa del Genoma/métodos
7.
J Clin Endocrinol Metab ; 106(5): 1312-1324, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33560372

RESUMEN

CONTEXT: Mitochondria are essential for cellular energy homeostasis, yet their role in subcutaneous adipose tissue (SAT) during different types of weight-loss interventions remains unknown. OBJECTIVE: To investigate how SAT mitochondria change following diet-induced and bariatric surgery-induced weight-loss interventions in 4 independent weight-loss studies. METHODS: The DiOGenes study is a European multicenter dietary intervention with an 8-week low caloric diet (LCD; 800 kcal/d; n = 261) and 6-month weight-maintenance (n = 121) period. The Kuopio Obesity Surgery study (KOBS) is a Roux-en-Y gastric bypass (RYGB) surgery study (n = 172) with a 1-year follow-up. We associated weight-loss percentage with global and 2210 mitochondria-related RNA transcripts in linear regression analysis adjusted for age and sex. We repeated these analyses in 2 studies. The Finnish CRYO study has a 6-week LCD (800-1000 kcal/d; n = 19) and a 10.5-month follow-up. The Swedish DEOSH study is a RYGB surgery study with a 2-year (n = 49) and 5-year (n = 37) follow-up. RESULTS: Diet-induced weight loss led to a significant transcriptional downregulation of oxidative phosphorylation (DiOGenes; ingenuity pathway analysis [IPA] z-scores: -8.7 following LCD, -4.4 following weight maintenance; CRYO: IPA z-score: -5.6, all P < 0.001), while upregulation followed surgery-induced weight loss (KOBS: IPA z-score: 1.8, P < 0.001; in DEOSH: IPA z-scores: 4.0 following 2 years, 0.0 following 5 years). We confirmed an upregulated oxidative phosphorylation at the proteomics level following surgery (IPA z-score: 3.2, P < 0.001). CONCLUSIONS: Differentially regulated SAT mitochondria-related gene expressions suggest qualitative alterations between weight-loss interventions, providing insights into the potential molecular mechanistic targets for weight-loss success.


Asunto(s)
Tejido Adiposo/metabolismo , Genes Mitocondriales/genética , Pérdida de Peso/fisiología , Adulto , Cirugía Bariátrica , Dieta Reductora , Femenino , Expresión Génica , Perfilación de la Expresión Génica , Humanos , Masculino , Redes y Vías Metabólicas/genética , Persona de Mediana Edad , Mitocondrias/genética , Mitocondrias/metabolismo , Obesidad Mórbida/dietoterapia , Obesidad Mórbida/genética , Obesidad Mórbida/cirugía , Estudios Retrospectivos , Pérdida de Peso/genética , Programas de Reducción de Peso
8.
Diabetologia ; 63(12): 2628-2640, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32960311

RESUMEN

AIMS/HYPOTHESIS: In islets from individuals with type 2 diabetes and in islets exposed to chronic elevated glucose, mitochondrial energy metabolism is impaired. Here, we studied early metabolic changes and mitochondrial adaptations in human beta cells during chronic glucose stress. METHODS: Respiration and cytosolic ATP changes were measured in human islet cell clusters after culture for 4 days in 11.1 mmol/l glucose. Metabolomics was applied to analyse intracellular metabolite changes as a result of glucose stress conditions. Alterations in beta cell function were followed using insulin secretion assays or cytosolic calcium signalling after expression of the calcium probe YC3.6 specifically in beta cells of islet clusters. RESULTS: At early stages of glucose stress, mitochondrial energy metabolism was augmented in contrast to the previously described mitochondrial dysfunction in beta cells from islets of diabetic donors. Following chronic glucose stress, mitochondrial respiration increased (by 52.4%, p < 0.001) and, as a consequence, the cytosolic ATP/ADP ratio in resting human pancreatic islet cells was elevated (by 27.8%, p < 0.05). Because of mitochondrial overactivation in the resting state, nutrient-induced beta cell activation was reduced. In addition, chronic glucose stress caused metabolic adaptations that resulted in the accumulation of intermediates of the glycolytic pathway, the pentose phosphate pathway and the TCA cycle; the most strongly augmented metabolite was glycerol 3-phosphate. The changes in metabolites observed are likely to be due to the inability of mitochondria to cope with continuous nutrient oversupply. To protect beta cells from chronic glucose stress, we inhibited mitochondrial pyruvate transport. Metabolite concentrations were partially normalised and the mitochondrial respiratory response to nutrients was markedly improved. Furthermore, stimulus-secretion coupling as assessed by cytosolic calcium signalling, was restored. CONCLUSION/INTERPRETATION: We propose that metabolic changes and associated mitochondrial overactivation are early adaptations to glucose stress, and may reflect what happens as a result of poor blood glucose control. Inhibition of mitochondrial pyruvate transport reduces mitochondrial nutrient overload and allows beta cells to recover from chronic glucose stress. Graphical abstract.


Asunto(s)
Células Secretoras de Insulina/metabolismo , Mitocondrias/metabolismo , Adenosina Trifosfato/metabolismo , Calcio/metabolismo , Metabolismo Energético/fisiología , Glucosa/metabolismo , Humanos , Metabolómica/métodos
9.
Biomolecules ; 10(7)2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32679761

RESUMEN

The development of high throughput assays for assessing lipid metabolism in metabolic disorders, especially in diabetes research, nonalcoholic fatty liver disease (NAFLD), and nonalcoholic steatohepatitis (NASH), provides a reliable tool for identifying and characterizing potential biomarkers in human plasma for early diagnosis or prognosis of the disease and/or responses to a specific treatment. Predicting the outcome of weight loss or weight management programs is a challenging yet important aspect of such a program's success. The characterization of potential biomarkers of metabolic disorders, such as lysophospholipids and bile acids, in large human clinical cohorts could provide a useful tool for successful predictions. In this study, we validated an LC-MS method combining the targeted and untargeted detection of these lipid species. Its potential for biomarker discovery was demonstrated in a well-characterized overweight/obese cohort subjected to a low-caloric diet intervention, followed by a weight maintenance phase. Relevant markers predicting successful responses to the low-caloric diet intervention for both weight loss and glycemic control improvements were identified. The response to a controlled weight loss intervention could be best predicted using the baseline concentration of three lysophospholipids (PC(22:4/0:0), PE(17:1/0:0), and PC(22:5/0:0)). Insulin resistance on the other hand could be best predicted using clinical parameters and levels of circulating lysophospholipids and bile acids. Our approach provides a robust tool not only for research purposes, but also for clinical practice, as well as designing new clinical interventions or assessing responses to specific treatment. Considering this, it presents a step toward personalized medicine.


Asunto(s)
Ácidos y Sales Biliares/sangre , Biomarcadores/sangre , Restricción Calórica/métodos , Lisofosfolípidos/sangre , Obesidad/dietoterapia , Adulto , Mantenimiento del Peso Corporal , Cromatografía Liquida , Estudios de Cohortes , Femenino , Humanos , Resistencia a la Insulina , Metabolismo de los Lípidos , Masculino , Espectrometría de Masas , Metabolómica , Persona de Mediana Edad , Obesidad/metabolismo , Resultado del Tratamiento
10.
Sci Rep ; 10(1): 9236, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32514005

RESUMEN

Weight loss aims to improve glycemic control in obese but strong variability is observed. Using a multi-omics approach, we investigated differences between 174 responders and 201 non-responders, that had lost >8% body weight following a low-caloric diet (LCD, 800 kcal/d for 8 weeks). The two groups were comparable at baseline for body composition, glycemic control, adipose tissue transcriptomics and plasma ketone bodies. But they differed significantly in their response to LCD, including improvements in visceral fat, overall insulin resistance (IR) and tissue-specific IR. Transcriptomics analyses found down-regulation in key lipogenic genes (e.g. SCD, ELOVL5) in responders relative to non-responders; metabolomics showed increase in ketone bodies; while proteomics revealed differences in lipoproteins. Findings were consistent between genders; with women displaying smaller improvements owing to a better baseline metabolic condition. Integrative analyses identified a plasma omics model that was able to predict non-responders with strong performance (on a testing dataset, the Receiving Operating Curve Area Under the Curve (ROC AUC) was 75% with 95% Confidence Intervals (CI) [67%, 83%]). This model was based on baseline parameters without the need for intrusive measurements and outperformed clinical models (p = 0.00075, with a +14% difference on the ROC AUCs). Our approach document differences between responders and non-responders, with strong contributions from liver and adipose tissues. Differences may be due to de novo lipogenesis, keto-metabolism and lipoprotein metabolism. These findings are useful for clinical practice to better characterize non-responders both prior and during weight loss.


Asunto(s)
Tejido Adiposo/metabolismo , Genómica , Cuerpos Cetónicos/sangre , Proteómica , Pérdida de Peso/fisiología , Área Bajo la Curva , Composición Corporal , Dieta Reductora , Regulación hacia Abajo , Elongasas de Ácidos Grasos/genética , Elongasas de Ácidos Grasos/metabolismo , Humanos , Grasa Intraabdominal/fisiología , Lípidos/análisis , Fenotipo , Curva ROC
11.
PLoS Comput Biol ; 16(6): e1007882, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32492067

RESUMEN

Molecular quantitative trait locus (QTL) analyses are increasingly popular to explore the genetic architecture of complex traits, but existing studies do not leverage shared regulatory patterns and suffer from a large multiplicity burden, which hampers the detection of weak signals such as trans associations. Here, we present a fully multivariate proteomic QTL (pQTL) analysis performed with our recently proposed Bayesian method LOCUS on data from two clinical cohorts, with plasma protein levels quantified by mass-spectrometry and aptamer-based assays. Our two-stage study identifies 136 pQTL associations in the first cohort, of which >80% replicate in the second independent cohort and have significant enrichment with functional genomic elements and disease risk loci. Moreover, 78% of the pQTLs whose protein abundance was quantified by both proteomic techniques are confirmed across assays. Our thorough comparisons with standard univariate QTL mapping on (1) these data and (2) synthetic data emulating the real data show how LOCUS borrows strength across correlated protein levels and markers on a genome-wide scale to effectively increase statistical power. Notably, 15% of the pQTLs uncovered by LOCUS would be missed by the univariate approach, including several trans and pleiotropic hits with successful independent validation. Finally, the analysis of extensive clinical data from the two cohorts indicates that the genetically-driven proteins identified by LOCUS are enriched in associations with low-grade inflammation, insulin resistance and dyslipidemia and might therefore act as endophenotypes for metabolic diseases. While considerations on the clinical role of the pQTLs are beyond the scope of our work, these findings generate useful hypotheses to be explored in future research; all results are accessible online from our searchable database. Thanks to its efficient variational Bayes implementation, LOCUS can analyze jointly thousands of traits and millions of markers. Its applicability goes beyond pQTL studies, opening new perspectives for large-scale genome-wide association and QTL analyses. Diet, Obesity and Genes (DiOGenes) trial registration number: NCT00390637.


Asunto(s)
Teorema de Bayes , Proteínas Sanguíneas/genética , Sitios de Carácter Cuantitativo , Biomarcadores/sangre , Estudio de Asociación del Genoma Completo , Humanos
12.
Cell ; 181(6): 1246-1262.e22, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32442405

RESUMEN

There is considerable inter-individual variability in susceptibility to weight gain despite an equally obesogenic environment in large parts of the world. Whereas many studies have focused on identifying the genetic susceptibility to obesity, we performed a GWAS on metabolically healthy thin individuals (lowest 6th percentile of the population-wide BMI spectrum) in a uniquely phenotyped Estonian cohort. We discovered anaplastic lymphoma kinase (ALK) as a candidate thinness gene. In Drosophila, RNAi mediated knockdown of Alk led to decreased triglyceride levels. In mice, genetic deletion of Alk resulted in thin animals with marked resistance to diet- and leptin-mutation-induced obesity. Mechanistically, we found that ALK expression in hypothalamic neurons controls energy expenditure via sympathetic control of adipose tissue lipolysis. Our genetic and mechanistic experiments identify ALK as a thinness gene, which is involved in the resistance to weight gain.


Asunto(s)
Quinasa de Linfoma Anaplásico/genética , Delgadez/genética , Tejido Adiposo/metabolismo , Adulto , Animales , Línea Celular , Estudios de Cohortes , Drosophila/genética , Estonia , Femenino , Humanos , Leptina/genética , Lipólisis/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Obesidad/genética , Interferencia de ARN/fisiología , Adulto Joven
13.
BMC Biol ; 18(1): 51, 2020 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-32438927

RESUMEN

BACKGROUND: The cline of human genetic diversity observable across Europe is recapitulated at a micro-geographic scale by variation within the Italian population. Besides resulting from extensive gene flow, this might be ascribable also to local adaptations to diverse ecological contexts evolved by people who anciently spread along the Italian Peninsula. Dissecting the evolutionary history of the ancestors of present-day Italians may thus improve the understanding of demographic and biological processes that contributed to shape the gene pool of European populations. However, previous SNP array-based studies failed to investigate the full spectrum of Italian variation, generally neglecting low-frequency genetic variants and examining a limited set of small effect size alleles, which may represent important determinants of population structure and complex adaptive traits. To overcome these issues, we analyzed 38 high-coverage whole-genome sequences representative of population clusters at the opposite ends of the cline of Italian variation, along with a large panel of modern and ancient Euro-Mediterranean genomes. RESULTS: We provided evidence for the early divergence of Italian groups dating back to the Late Glacial and for Neolithic and distinct Bronze Age migrations having further differentiated their gene pools. We inferred adaptive evolution at insulin-related loci in people from Italian regions with a temperate climate, while possible adaptations to pathogens and ultraviolet radiation were observed in Mediterranean Italians. Some of these adaptive events may also have secondarily modulated population disease or longevity predisposition. CONCLUSIONS: We disentangled the contribution of multiple migratory and adaptive events in shaping the heterogeneous Italian genomic background, which exemplify population dynamics and gene-environment interactions that played significant roles also in the formation of the Continental and Southern European genomic landscapes.


Asunto(s)
Evolución Molecular , Variación Genética , Genoma Humano , Arqueología , ADN Antiguo/análisis , Humanos , Italia , Población Blanca
14.
Int J Obes (Lond) ; 44(6): 1376-1386, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32203114

RESUMEN

BACKGROUND: Recent evidence indicates that insulin resistance (IR) in obesity may develop independently in different organs, representing different etiologies toward type 2 diabetes and other cardiometabolic diseases. The aim of this study was to investigate whether IR in the liver and IR in skeletal muscle are associated with distinct metabolic profiles. METHODS: This study includes baseline data from 634 adults with overweight or obesity (BMI ≥ 27 kg/m2) (≤65 years; 63% women) without diabetes of the European Diogenes Study. Hepatic insulin resistance index (HIRI) and muscle insulin sensitivity index (MISI), were derived from a five-point OGTT. At baseline 17 serum metabolites were identified and quantified by nuclear-magnetic-resonance spectroscopy. Linear mixed model analyses (adjusting for center, sex, body mass index (BMI), waist-to-hip ratio) were used to associate HIRI and MISI with these metabolites. In an independent sample of 540 participants without diabetes (BMI ≥ 27 kg/m2; 40-65 years; 46% women) of the Maastricht Study, an observational prospective population-based cohort study, 11 plasma metabolites and a seven-point OGTT were available for validation. RESULTS: Both HIRI and MISI were associated with higher levels of valine, isoleucine, oxo-isovaleric acid, alanine, lactate, and triglycerides, and lower levels of glycine (all p < 0.05). HIRI was also associated with higher levels of leucine, hydroxyisobutyrate, tyrosine, proline, creatine, and n-acetyl and lower levels of acetoacetate and 3-OH-butyrate (all p < 0.05). Except for valine, these results were replicated for all available metabolites in the Maastricht Study. CONCLUSIONS: In persons with obesity without diabetes, both liver and muscle IR show a circulating metabolic profile of elevated (branched-chain) amino acids, lactate, and triglycerides, and lower glycine levels, but only liver IR associates with lower ketone body levels and elevated ketogenic amino acids in circulation, suggestive of decreased ketogenesis. This knowledge might enhance developments of more targeted tissue-specific interventions to prevent progression to more severe disease stages.


Asunto(s)
Resistencia a la Insulina , Obesidad/metabolismo , Sobrepeso/metabolismo , Adulto , Femenino , Humanos , Cuerpos Cetónicos/sangre , Hígado/metabolismo , Masculino , Metabolómica , Persona de Mediana Edad , Estudios Multicéntricos como Asunto , Músculo Esquelético/metabolismo , Estudios Observacionales como Asunto , Estudios Prospectivos , Ensayos Clínicos Controlados Aleatorios como Asunto
15.
Nat Commun ; 10(1): 4291, 2019 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-31541116

RESUMEN

Supplementation with the NAD+ precursor nicotinamide riboside (NR) ameliorates and prevents a broad array of metabolic and aging disorders in mice. However, little is known about the physiological role of endogenous NR metabolism. We have previously shown that NR kinase 1 (NRK1) is rate-limiting and essential for NR-induced NAD+ synthesis in hepatic cells. To understand the relevance of hepatic NR metabolism, we generated whole body and liver-specific NRK1 knockout mice. Here, we show that NRK1 deficiency leads to decreased gluconeogenic potential and impaired mitochondrial function. Upon high-fat feeding, NRK1 deficient mice develop glucose intolerance, insulin resistance and hepatosteatosis. Furthermore, they are more susceptible to diet-induced liver DNA damage, due to compromised PARP1 activity. Our results demonstrate that endogenous NR metabolism is critical to sustain hepatic NAD+ levels and hinder diet-induced metabolic damage, highlighting the relevance of NRK1 as a therapeutic target for metabolic disorders.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Hepatopatías/prevención & control , Niacinamida/análogos & derivados , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Sustancias Protectoras/metabolismo , Sustancias Protectoras/farmacología , Animales , Glucemia , Daño del ADN , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Predisposición Genética a la Enfermedad/genética , Intolerancia a la Glucosa , Hepatocitos/metabolismo , Resistencia a la Insulina , Metabolismo de los Lípidos , Hígado/metabolismo , Hepatopatías/genética , Hepatopatías/patología , Masculino , Síndrome Metabólico/genética , Síndrome Metabólico/prevención & control , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NAD/metabolismo , Niacinamida/genética , Niacinamida/metabolismo , Niacinamida/farmacología , Compuestos de Piridinio
16.
Diabetes ; 68(12): 2247-2258, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31492661

RESUMEN

Obesity-related insulin resistance (IR) may develop in multiple organs, representing various etiologies for cardiometabolic diseases. We identified abdominal subcutaneous adipose tissue (ScAT) transcriptome profiles in liver or muscle IR by means of RNA sequencing in overweight or obese participants of the Diet, Obesity, and Genes (DiOGenes) (NCT00390637, ClinicalTrials.gov) cohort (n = 368). Tissue-specific IR phenotypes were derived from a 5-point oral glucose tolerance test. Hepatic and muscle IR were characterized by distinct abdominal ScAT transcriptome profiles. Genes related to extracellular remodeling were upregulated in individuals with primarily hepatic IR, while genes related to inflammation were upregulated in individuals with primarily muscle IR. In line with this, in two independent cohorts, the Cohort on Diabetes and Atherosclerosis Maastricht (CODAM) (n = 325) and the Maastricht Study (n = 685), an increased systemic low-grade inflammation profile was specifically related to muscle IR but not to liver IR. We propose that increased ScAT inflammatory gene expression may translate into an increased systemic inflammatory profile, linking ScAT inflammation to the muscle IR phenotype. These distinct IR phenotypes may provide leads for more personalized prevention of cardiometabolic diseases.


Asunto(s)
Inflamación/metabolismo , Resistencia a la Insulina/fisiología , Hígado/metabolismo , Obesidad/metabolismo , Sobrepeso/metabolismo , Grasa Subcutánea/metabolismo , Adolescente , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
17.
Mol Cell Proteomics ; 18(6): 1242-1254, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30948622

RESUMEN

Comprehensive, high throughput analysis of the plasma proteome has the potential to enable holistic analysis of the health state of an individual. Based on our own experience and the evaluation of recent large-scale plasma mass spectrometry (MS) based proteomic studies, we identified two outstanding challenges: slow and delicate nano-flow liquid chromatography (LC) and irreproducibility of identification of data-dependent acquisition (DDA). We determined an optimal solution reducing these limitations with robust capillary-flow data-independent acquisition (DIA) MS. This platform can measure 31 plasma proteomes per day. Using this setup, we acquired a large-scale plasma study of the diet, obesity and genes dietary (DiOGenes) comprising 1508 samples. Proving the robustness, the complete acquisition was achieved on a single analytical column. Totally, 565 proteins (459 identified with two or more peptide sequences) were profiled with 74% data set completeness. On average 408 proteins (5246 peptides) were identified per acquisition (319 proteins in 90% of all acquisitions). The workflow reproducibility was assessed using 34 quality control pools acquired at regular intervals, resulting in 92% data set completeness with CVs for protein measurements of 10.9%.The profiles of 20 apolipoproteins could be profiled revealing distinct changes. The weight loss and weight maintenance resulted in sustained effects on low-grade inflammation, as well as steroid hormone and lipid metabolism, indicating beneficial effects. Comparison to other large-scale plasma weight loss studies demonstrated high robustness and quality of biomarker candidates identified. Tracking of nonenzymatic glycation indicated a delayed, slight reduction of glycation in the weight maintenance phase. Using stable-isotope-references, we could directly and absolutely quantify 60 proteins in the DIA.In conclusion, we present herein the first large-scale plasma DIA study and one of the largest clinical research proteomic studies to date. Application of this fast and robust workflow has great potential to advance biomarker discovery in plasma.


Asunto(s)
Proteínas Sanguíneas/metabolismo , Proteómica , Reología , Pérdida de Peso , Adulto , Bases de Datos de Proteínas , Glicosilación , Humanos , Marcaje Isotópico , Proteoma/metabolismo , Estándares de Referencia
18.
Am J Clin Nutr ; 109(4): 1029-1037, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30982860

RESUMEN

BACKGROUND: Several studies recently reported contradicting results regarding the link between amylase 1 (AMY1) copy numbers (CNs), obesity, and type 2 diabetes. OBJECTIVE: The aim of this study was to assess the impact of AMY1 CN on anthropometrics and glycemic outcomes in obese individuals following a 2-phase dietary weight loss intervention. METHODS: Using the paralog ratio test, AMY1 CNs were accurately measured in 761 obese individuals from the DiOGenes study. Subjects first underwent an 8-wk low-calorie diet (LCD, at 800 kcal/d) and then were randomly assigned to a 6-mo weight maintenance dietary (WMD) intervention with arms having different glycemic loads. RESULTS: At baseline, a modest association between AMY1 CN and BMI (P = 0.04) was observed. AMY1 CN was not associated with baseline glycemic variables. In addition, AMY1 CN was not associated with anthropometric or glycemic outcomes following either LCD or WMD. Interaction analyses between AMY1 CN and nutrient intake did not reveal any significant association with clinical parameters (at baseline and following LCD or WMD) or when testing gene × WMD interactions during the WMD phase. CONCLUSION: In the absence of association with weight trajectories or glycemic improvements, the AMY1 CN cannot be considered as an important biomarker for response to a clinical weight loss and weight maintenance programs in overweight/obese subjects. This trial was registered at www.clinicaltrials.gov as NCT00390637.


Asunto(s)
Obesidad/dietoterapia , Obesidad/genética , alfa-Amilasas Salivales/genética , Adulto , Peso Corporal , Trayectoria del Peso Corporal , Restricción Calórica , Femenino , Dosificación de Gen , Carga Glucémica , Humanos , Masculino , Persona de Mediana Edad , Obesidad/enzimología , Obesidad/fisiopatología , alfa-Amilasas Salivales/metabolismo , Pérdida de Peso
19.
Am J Clin Nutr ; 109(6): 1499-1510, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30869115

RESUMEN

BACKGROUND: The adipose tissue (AT) is a secretory organ producing a wide variety of factors that participate in the genesis of metabolic disorders linked to excess fat mass. Weight loss improves obesity-related disorders. OBJECTIVES: Transcriptomic studies on human AT, and a combination of analyses of transcriptome and proteome profiling of conditioned media from adipocytes and stromal cells isolated from human AT, have led to the identification of apolipoprotein M (apoM) as a putative adipokine. We aimed to validate apoM as novel adipokine, investigate the relation of AT APOM expression with metabolic syndrome and insulin sensitivity, and study the regulation of its expression in AT and secretion during calorie restriction-induced weight loss. METHODS: We examined APOM mRNA level and secretion in AT from 485 individuals enrolled in 5 independent clinical trials, and in vitro in human multipotent adipose-derived stem cell adipocytes. APOM expression and secretion were measured during dieting. RESULTS: APOM was expressed in human subcutaneous and visceral AT, mainly by adipocytes. ApoM was released into circulation from AT, and plasma apoM concentrations correlate with AT APOM mRNA levels. In AT, APOM expression inversely correlated with adipocyte size, was lower in obese compared to lean individuals, and reduced in subjects with metabolic syndrome and type 2 diabetes. Regardless of fat depot, there was a positive relation between AT APOM expression and systemic insulin sensitivity, independently of fat mass and plasma HDL cholesterol. In human multipotent adipose-derived stem cell adipocytes, APOM expression was enhanced by insulin-sensitizing peroxisome proliferator-activated receptor agonists and inhibited by tumor necrosis factor α, a cytokine that causes insulin resistance. In obese individuals, calorie restriction increased AT APOM expression and secretion. CONCLUSIONS: ApoM is a novel adipokine, the expression of which is a hallmark of healthy AT and is upregulated by calorie restriction. AT apoM deserves further investigation as a potential biomarker of risk for diabetes and cardiovascular diseases.


Asunto(s)
Adipoquinas/genética , Apolipoproteínas M/genética , Obesidad/dietoterapia , Obesidad/genética , Adipocitos/metabolismo , Adipoquinas/metabolismo , Apolipoproteínas M/metabolismo , Restricción Calórica , Ensayos Clínicos como Asunto , Estudios de Cohortes , Estudios Transversales , Femenino , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Obesidad/metabolismo
20.
Nat Commun ; 10(1): 540, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30710084

RESUMEN

Hundreds of genetic variants have been associated with Body Mass Index (BMI) through genome-wide association studies (GWAS) using observational cohorts. However, the genetic contribution to efficient weight loss in response to dietary intervention remains unknown. We perform a GWAS in two large low-caloric diet intervention cohorts of obese participants. Two loci close to NKX6.3/MIR486 and RBSG4 are identified in the Canadian discovery cohort (n = 1166) and replicated in the DiOGenes cohort (n = 789). Modulation of HGTX (NKX6.3 ortholog) levels in Drosophila melanogaster leads to significantly altered triglyceride levels. Additional tissue-specific experiments demonstrate an action through the oenocytes, fly hepatocyte-like cells that regulate lipid metabolism. Our results identify genetic variants associated with the efficacy of weight loss in obese subjects and identify a role for NKX6.3 in lipid metabolism, and thereby possibly weight control.


Asunto(s)
Estudio de Asociación del Genoma Completo , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Pérdida de Peso/genética , Adulto , Animales , Teorema de Bayes , Estudios de Cohortes , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Femenino , Proteínas de Homeodominio/genética , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo , Factores de Transcripción/genética , Triglicéridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...