Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Aging Cell ; 22(10): e13948, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37548098

RESUMEN

Senolytics are a category of drugs that reduce the impact of cellular senescence, an effect associated with a range of chronic and age-related diseases. Since the discovery of the first senolytics in 2015, the number of known senolytic agents has grown dramatically. This review discusses the broad categories of known senolytics-kinase inhibitors, Bcl-2 family protein inhibitors, naturally occurring polyphenols, heat shock protein inhibitors, BET family protein inhibitors, P53 stabilizers, repurposed anti-cancer drugs, cardiac steroids, PPAR-alpha agonists, and antibiotics. The approaches used to screen for new senolytics are articulated including a range of methods to induce senescence, different target cell types, various senolytic assays, and markers. The choice of methods can greatly influence the outcomes of a screen, with high-quality screens featuring robust systems, adequate controls, and extensive validation in alternate assays. Recent advances in single-cell analysis and computational methods for senolytic identification are also discussed. There is significant potential for further drug discovery, but this will require additional research into drug targets and mechanisms of actions and their subsequent rigorous evaluation in pre-clinical models and human trials.


Asunto(s)
Antineoplásicos , Senoterapéuticos , Humanos , Senescencia Celular , Antineoplásicos/farmacología , Descubrimiento de Drogas
2.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35337158

RESUMEN

Herpes simplex virus (HSV) infections are a worldwide health problem in need of new effective treatments. Of particular interest is the identification of antiviral agents that act via different mechanisms compared to current drugs, as these could interact synergistically with first-line antiherpetic agents to accelerate the resolution of HSV-1-associated lesions. For this study, we applied a structure-based molecular docking approach targeting the nectin-1 and herpesvirus entry mediator (HVEM) binding interfaces of the viral glycoprotein D (gD). More than 527,000 natural compounds were virtually screened using Autodock Vina and then filtered for favorable ADMET profiles. Eight top hits were evaluated experimentally in African green monkey kidney cell line (VERO) cells, which yielded two compounds with potential antiherpetic activity. One active compound (1-(1-benzofuran-2-yl)-2-[(5Z)-2H,6H,7H,8H-[1,3] dioxolo[4,5-g]isoquinoline-5-ylidene]ethenone) showed weak but significant antiviral activity. Although less potent than antiherpetic agents, such as acyclovir, it acted at the viral inactivation stage in a dose-dependent manner, suggesting a novel mode of action. These results highlight the feasibility of in silico approaches for identifying new antiviral compounds, which may be further optimized by medicinal chemistry approaches.

3.
Adv Healthc Mater ; 11(11): e2102487, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35189037

RESUMEN

The potential health benefits of probiotics may not be realized because of the substantial reduction in their viability during food storage and gastrointestinal transit. Microencapsulation has been successfully utilized to improve the resistance of probiotics to critical conditions. Owing to the unique properties of biopolymers, they have been prevalently used for microencapsulation of probiotics. However, majority of microencapsulated products only contain a single layer of protection around probiotics, which is likely to be inferior to more sophisticated approaches. This review discusses emerging methods for the multilayer encapsulation of probiotic using biopolymers. Correlations are drawn between fabrication techniques and the resultant microparticle properties. Subsequently, multilayer microparticles are categorized based on their layer designs. Recent reports of specific biopolymeric formulations are examined regarding their physical and biological properties. In particular, animal models of gastrointestinal transit and disease are highlighted, with respect to trials of multilayer microencapsulated probiotics. To conclude, novel materials and approaches for fabrication of multilayer structures are highlighted.


Asunto(s)
Probióticos , Animales , Biopolímeros , Colon , Composición de Medicamentos/métodos , Viabilidad Microbiana
4.
Cell Tissue Res ; 388(2): 359-371, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35088179

RESUMEN

Rhogocyte is a unique molluscan cell that synthesises a supramolecular respiratory protein known as hemocyanin. Its ability to synthesise the protein has eluded the scientists despite hemocyanin's importance as a carrier protein and complex molecule with anti-viral activity. Although a hypothetical model of hemocyanin release from the rhogocytes lacunae was proposed based on colloid-osmotic pressure mechanism, lack of in vitro studies limits further validation of this model. In this study, we aim to investigate the impact of cell culture conditions and nature of hemocyanin biosynthesis of rhogocyte cells dissociated from Haliotis laevigata mantle tissue. Population of cells with different hemocyanin expression levels was profiled using flow cytometry, while hemocyanin concentrations in the media were elucidated by ELISA assay. We demonstrated that addition of lipoprotein supplement into the media resulted in a burst secretion of hemocyanin into the culture media. Over 7 days of culture, the population of cells tagged with hemocyanin antibody increased steadily while hemocyanin release in the media decreased significantly. Variation of culture medium, temperature, growth supplement type and concentration also impacted the cell growth and hemocyanin biosynthesis. These results indicated the possibility of an active process triggered by the addition of supplement to synthesise the protein at the highest amount during the first hour. The current study provides a glimpse of the hemocyanin biosynthesis by rhogocyte that may be significant to understand the cell ability to synthesise supramolecular protein and secretion through lacunae.


Asunto(s)
Gastrópodos , Hemocianinas , Animales , Citometría de Flujo , Hemocianinas/metabolismo , Lipoproteínas
5.
Bioorg Chem ; 119: 105574, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34971947

RESUMEN

The COVID-19 pandemic caused by the SARS-CoV-2 virus has led to a major public health burden and has resulted in millions of deaths worldwide. As effective treatments are limited, there is a significant requirement for high-throughput, low resource methods for the discovery of novel antivirals. The SARS-CoV-2 spike protein plays a key role in viral entry and has been identified as a therapeutic target. Using the available spike crystal structure, we performed a virtual screen with a library of 527 209 natural compounds against the receptor binding domain of this protein. Top hits from this screen were subjected to a second, more comprehensive molecular docking experiment and filtered for favourable ADMET properties. The in vitro activity of 10 highly ranked compounds was assessed using a virus neutralisation assay designed to facilitate viral entry in a physiologically relevant manner via the plasma membrane route. Subsequently, four compounds ZINC02111387, ZINC02122196, SN00074072 and ZINC04090608 were identified to possess antiviral activity in the µM range. These findings validate the virtual screening method as a tool for identifying novel antivirals and provide a basis for future drug development against SARS-CoV-2.


Asunto(s)
Productos Biológicos/farmacología , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Animales , Antivirales/farmacología , Productos Biológicos/toxicidad , Simulación por Computador , Evaluación Preclínica de Medicamentos , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Pruebas de Neutralización , Reproducibilidad de los Resultados , SARS-CoV-2/efectos de los fármacos , Internalización del Virus/efectos de los fármacos
6.
Food Chem ; 373(Pt B): 131402, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-34741965

RESUMEN

The availability of donor human milk (DHM) is currently limited by the volumes that can be thermally pasteurized and kept in long-term cold storage. This study assesses the application of freeze-drying followed by low-dose gamma irradiation of DHM for simplified, safe long-term storage. Solid-phase microextraction (SPME) GC-MS, SDS and native PAGE gel electrophoresis demonstrated that the overall changes in volatile and protein profiles in Holder pasteurized and freeze-dried DHM was negligible compared to the natural variations in DHM. Freeze-dried DHM samples (moisture < 2.2 %) processed with 2 kGy gamma irradiation did not show any significant lipid oxidation end-products and variation in protein profile. Therefore, freeze-drying followed by in-packaging gamma irradiation could be a safe method for pasteurization, convenient storage and delivery of DHM at ambient temperature. These methods may generate a means to create a reserve stock of DHM for emergencies and humanitarian aid.


Asunto(s)
Bancos de Leche Humana , Leche Humana , Liofilización , Humanos , Pasteurización
7.
Biomed Microdevices ; 23(4): 55, 2021 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-34655329

RESUMEN

Gut-on-a-chip microfluidic devices have emerged as versatile and practical systems for modeling the human intestine in vitro. Cells cultured under microfluidic conditions experience the effect of shear stress, used as a biomechanical cue to promote a faster cell polarization in Caco-2 cells when compared with static culture conditions. However, published systems to date have utilized a constant flow rate that fails to account for changes in cell shear stress ([Formula: see text]) resulting from changes in cell elongation that occur with differentiation. In this study, computational fluid dynamics (CFD) simulations predict that cells with villi-like morphology experience a [Formula: see text] higher than bulge-like cells at the initial growth stages. Therefore, we investigated the use of a dynamic flow rate to maintain a constant [Formula: see text] across the experiment. Microscopic assessment of cell morphology and dome formation confirmed the initiation of Caco-2 polarization within three days. Next, adopting our dynamic approach, we evaluated whether the following decreased flow could still contribute to complete cell differentiation if compared with the standard constant flow methodology. Caco-2 cells polarized under both conditions, secreted mucin-2 and villin and formed tight junctions and crypt-villi structures. Gene expression was not impacted using the dynamic flow rate. In conclusion, our dynamic flow approach still facilitates cell differentiation while enabling a reduced consumption of reagents.


Asunto(s)
Dispositivos Laboratorio en un Chip , Microfluídica , Células CACO-2 , Humanos , Estrés Mecánico , Uniones Estrechas
8.
Foods ; 10(9)2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-34574186

RESUMEN

The most common pasteurisation method used by human milk banks is Holder pasteurisation. This involves thermal processing, which can denature important proteins and can potentially reduce the natural antimicrobial properties found in human milk. This study assesses the application of a hybrid method comprised of freeze-drying followed by low-dose gamma-irradiation for nonthermal donor human milk pasteurisation. Freeze-drying donor human milk followed by gamma-irradiation at 2 kGy was as efficient as Holder pasteurisation in the reduction of bacterial inoculants of Staphylococcus aureus (106 cfu/mL) and Salmonella typhimurium (106 cfu/mL) in growth inhibition assays. These assays also demonstrated that human milk naturally inhibits the growth of bacterial inoculants S. aureus, S. typhimurium, and Escherichia coli. Freeze drying (without gamma-irradiation) did not significantly reduce this natural growth inhibition. By contrast, Holder pasteurisation significantly reduced the milk's natural antimicrobial effect on S. aureus growth after 6 h (-19.8% p = 0.01). Freeze-dried and then gamma-irradiated donor human milk showed a strong antimicrobial effect across a dose range of 2-50 kGy, with only a minimal growth of S. aureus observed after 6 h incubation. Thus, a hybrid method of freeze-drying followed by 2 kGy of gamma-irradiation preserves antimicrobial properties and enables bulk pasteurisation within sealed packaging of powderised donor human milk. This work forwards a goal of increasing shelf life and simplifying storage and transportation, while also preserving functionality and antimicrobial properties.

9.
Molecules ; 26(6)2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33799713

RESUMEN

Osteomyelitis and orthopedic infections are major clinical problems, limited by a lack of antibiotics specialized for such applications. In this paper, we describe the design and synthesis of a novel bone-binding antibiotic (BBA-1) and its subsequent structural and functional characterization. The synthesis of BBA-1 was the result of a two-step chemical conjugation of cationic selective antimicrobial-90 (CSA-90) and the bisphosphonate alendronate (ALN) via a heterobifunctional linker. This was analytically confirmed by HPLC, FT-IR, MS and NMR spectroscopy. BBA-1 showed rapid binding and high affinity to bone mineral in an in vitro hydroxyapatite binding assay. Kirby-Baur assays confirmed that BBA-1 shows a potent antibacterial activity against Staphylococcus aureus and methicillin-resistant S. aureus comparable to CSA-90. Differentiation of cultured osteoblasts in media supplemented with BBA-1 led to increased alkaline phosphatase expression, which is consistent with the pro-osteogenic activity of CSA-90. Bisphosphonates, such as ALN, are inhibitors of protein prenylation, however, the amine conjugation of ALN to CSA-90 disrupted this activity in an in vitro protein prenylation assay. Overall, these findings support the antimicrobial, bone-binding, and pro-osteogenic activities of BBA-1. The compound and related agents have the potential to ensure lasting activity against osteomyelitis after systemic delivery.


Asunto(s)
Alendronato/química , Antibacterianos/síntesis química , Osteomielitis/tratamiento farmacológico , Pregnanos/química , Propilaminas/química , Células 3T3 , Alendronato/farmacología , Animales , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Huesos/efectos de los fármacos , Calcificación Fisiológica/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Difosfonatos/química , Difosfonatos/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Ratones , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Pregnanos/farmacología , Propilaminas/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos
10.
PLoS One ; 16(3): e0247546, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33657107

RESUMEN

Tramadol is used as an analgesic in humans and some animal species. When tramadol is administered to most species it undergoes metabolism to its main metabolites M1 or O-desmethyltramadol, and M2 or N-desmethyltramadol, and many other metabolites. This study describes the pharmacokinetic profile of tramadol when a single subcutaneous bolus of 2 mg/kg was initially administered to two koalas. Based on the results of these two koalas, subsequently 4 mg/kg as a single subcutaneous injection, was administered to an additional four koalas. M1 is recognised as an active metabolite and has greater analgesic activity than tramadol, while M2 is considered inactive. A liquid chromatography assay to quantify tramadol, M1 and M2 in koala plasma was developed and validated. Liquid chromatography-mass spectrometry confirmed that M1 had been identified. Additionally, the metabolite didesmethyltramadol was identified in chromatograms of two of the male koalas. When 4 mg/kg tramadol was administered, the median half-life of tramadol and M1 were 2.89 h and 24.69 h, respectively. The M1 plasma concentration remained well above the minimally effective M1 plasma concentration in humans (approximately 36 ng/mL) over 12 hours. The M1 plasma concentration, when tramadol was administered at 2 mg/kg, did not exceed 36 ng/mL at any time-point. When tramadol was administered at 2 mg/kg and 4 mg/kg the area under the curve M1: tramadol ratios were 0.33 and 0.50, respectively. Tramadol and M1 binding to plasma protein were determined using thawed, frozen koala plasma and the mean binding was 20% and 75%, respectively. It is concluded that when tramadol is administered at 4 mg/kg as a subcutaneous injection to the koala, it is predicted to have some analgesic activity.


Asunto(s)
Analgésicos Opioides/farmacocinética , Animales de Zoológico/metabolismo , Phascolarctidae/metabolismo , Tramadol/análogos & derivados , Analgésicos Opioides/administración & dosificación , Analgésicos Opioides/sangre , Animales , Animales de Zoológico/sangre , Australia , Cromatografía Líquida de Alta Presión/métodos , Femenino , Semivida , Inyecciones Subcutáneas , Masculino , Espectrometría de Masas/métodos , Phascolarctidae/sangre , Tramadol/administración & dosificación , Tramadol/sangre , Tramadol/farmacocinética , Resultado del Tratamiento , Heridas y Lesiones/tratamiento farmacológico , Heridas y Lesiones/veterinaria
11.
Public Health Nutr ; 24(7): 1725-1740, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32539885

RESUMEN

OBJECTIVE: This review collates the published reports that focus on microbial and viral illnesses that can be transmitted by breast milk, donor milk and powdered infant formula (PIF). In this context, we attempt to define a risk framework encompassing those hazards, exposure scenarios, vulnerability and protective factors. DESIGN: A literature search was performed for reported cases of morbidity and mortality associated with different infant feeding modes. SETTING: Exclusive breast-feeding is the recommended for infant feeding under 6 months, or failing that, provision of donated human milk. However, the use of PIF remains high despite its intrinsic and extrinsic risk of microbial contamination, as well as the potential for adverse physiological effects, including infant gut dysbiosis. RESULTS: Viable pathogen transmission via breast-feeding or donor milk (pasteurised and unpasteurised) is rare. However, transmission of HIV and human T-cell lymphotropic virus-1 is a concern for breast-feeding mothers, particularly for mothers undertaking a mixed feeding mode (PIF and breast-feeding). In PIF, intrinsic and extrinsic microbial contamination, such as Cronobacter and Salmonella, remain significant identifiable causes of infant morbidity and mortality. CONCLUSIONS: Disease transmission through breast-feeding or donor human milk is rare, most likely owing to its complex intrinsically protective composition of human milk and protection of the infant gut lining. Contamination of PIF and the morbidity associated with this is likely underappreciated in terms of community risk. A better system of safe donor milk sharing that also establishes security of supply for non-hospitalised healthy infants in need of breast milk would reduce the reliance on PIF.


Asunto(s)
Lactancia Materna , Leche Humana , Femenino , Humanos , Lactante , Fórmulas Infantiles , Madres
12.
Saudi Pharm J ; 28(11): 1392-1401, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33250646

RESUMEN

In this paper, Doxil coupled with anti-CD133 monoclonal antibodies made by either routine or optimized post-insertion technique, were compared with respect to their size, drug leakage, release pattern and the number of antibodies conjugated per single liposome. The results demonstrated that the number of antibodies conjugated per liposome in the optimized post-insertion technique was almost two times more than those in the routine post-insertion method. However, the drug release and leakage pattern was almost similar between the two methods. Furthermore, anti-tumor activity and therapeutic efficacy of the preferred CD133-targeted Doxil with Doxil was compared in terms of their in vitro binding, uptake, internalization and cytotoxicity against HT-29 (CD133+) and CHO (CD133-) cells. Flow cytometry analyses and confocal laser scanning microscopy results exhibited a significantly higher cellular uptake, binding and internalization of CD133-targeted Doxil in CD+133 cells relative to Doxil. Cytotoxicity results revealed a lower in vitro inhibitory concentration for CD133-targeted Doxil compared to Doxil. However, CHO (CD133-) cells displayed a similar uptake and in vitro cytotoxicity for both CD133-Doxil and non-targeted Doxil. Therefore, the results of this study can exhibit that specific recognition and binding of antibodies with CD133 receptors on HT-29 cells can result in enhanced cellular uptake, internalization and cytotoxicity. The research suggests further investigation for in vivo studies and may offer proof-of-principle for an active targeting concept.

13.
Curr Dev Nutr ; 4(5): nzaa025, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32391511

RESUMEN

Citrus fruit and in particular flavonoid compounds from citrus peel have been identified as agents with utility in the treatment of cancer. This review provides a background and overview regarding the compounds found within citrus peel with putative anticancer potential as well as the associated in vitro and in vivo studies. Historical studies have identified a number of cellular processes that can be modulated by citrus peel flavonoids including cell proliferation, cell cycle regulation, apoptosis, metastasis, and angiogenesis. More recently, molecular studies have started to elucidate the underlying cell signaling pathways that are responsible for the flavonoids' mechanism of action. These growing data support further research into the chemopreventative potential of citrus peel extracts, and purified flavonoids in particular. This critical review highlights new research in the field and synthesizes the pathways modulated by flavonoids and other polyphenolic compounds into a generalized schema.

14.
Adv Healthc Mater ; 8(21): e1900968, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31592579

RESUMEN

Models of the human gastrointestinal tract (GIT) can be powerful tools for examining the biological interactions of food products and pharmaceuticals. This can be done under normal healthy conditions or using models of disease-many of which have no curative therapy. This report outlines the field of gastrointestinal modeling, with a particular focus on the intestine. Traditional in vivo animal models are compared to a range of in vitro models. In vitro systems are elaborated over time, recently culminating with microfluidic intestines-on-chips (IsOC) and 3D bioengineered models. Macroscale models are also reviewed for their important contribution in the microbiota studies. Lastly, it is discussed how in silico approaches may have utility in predicting and interpreting experimental data. The various advantages and limitations of the different systems are contrasted. It is posited that only through complementary use of these models will salient research questions be able to be addressed.


Asunto(s)
Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/microbiología , Microfluídica/métodos , Animales , Células CACO-2 , Células HT29 , Humanos , Microbiota/fisiología
15.
J Orthop Res ; 37(11): 2278-2286, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31283054

RESUMEN

Bone allografts are inferior to autografts for the repair of critical-sized defects. Prior studies have suggested that bone morphogenetic protein-2 (BMP-2) can be combined with allografts to produce superior healing. We created a bioactive coating on bone allografts using polycondensed deoxyribose isobutyrate ester (PDIB) polymer to deliver BMP-2 ± the bisphosphonate zoledronic acid (ZA) and tested its ability to enhance the functional utility of allografts in preclinical Wistar rat models. One ex vivo and two in vivo proof-of-concept studies were performed. First, PDIB was shown to be able to coat bone grafts (BGs). Second, PDIB was used to coat structural allogenic corticocancellous BG with BMP-2 ± ZA ± hydroxyapatite (HA) microparticles and compared with PDIB-coated grafts in a rat muscle pouch model. Next, a rat critical defect model was performed with treatment groups including (i) empty defect, (ii) BG, (iii) collagen sponge + BMP-2, (iv) BG + PDIB/BMP-2, and (v) BG + PDIB/BMP-2/ZA. Key outcome measures included detection of fluorescent bone labels, microcomputed tomography (CT) quantification of bone, and radiographic healing. In the muscle pouch study, BMP-2 did not increase net bone volume measured by microCT, however, fluorescent labeling showed large amounts of new bone. Addition of ZA increased BV by sevenfold (p < 0.01). In the critical defect model, allografts were insufficient to promote reliable union, however, union was achieved in collagen/BMP-2 and all BG/BMP-2 groups. Statement of clinical significance: These data support the concept that PDIB is a viable delivery method for BMP-2 and ZA delivery to enhance the bone forming potential of allografts. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:2278-2286, 2019.


Asunto(s)
Conservadores de la Densidad Ósea/administración & dosificación , Proteína Morfogenética Ósea 2/administración & dosificación , Trasplante Óseo , Ácido Zoledrónico/administración & dosificación , Aloinjertos , Animales , Desoxirribosa/química , Sistemas de Liberación de Medicamentos , Evaluación Preclínica de Medicamentos , Isobutiratos/química , Masculino , Polímeros/química , Ratas Wistar
16.
Food Funct ; 10(6): 3727-3737, 2019 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-31169845

RESUMEN

The re-entry of quiescent cancer cells to the cell cycle plays a key role in cancer recurrence, which can pose a high risk after primary treatment. Citrus peel extracts (CPEs) contain compounds that can potentially impair tumour growth; however the mechanism of action and effects on cell cycle regulation remain unclear. In this study, the capacity of an ethyl acetate : hexane extract (CPE/hexane) and water extract (CPE/water) to modulate the cell cycle re-entry of quiescent (PC-3 and LNCaP) prostate cancer cells was tested in an in vitro culture system. Cell cycle analysis showed that the quiescent PC-3 and LNCaP cancer cells in the presence of CPE/water were impaired in their ability to enter the S phase where only 2-3% reduction of G0/G1 cells was noted compared to 12-18% reduction of control cells. In contrast, the CPE/hexane did not show any cell cycle inhibition activity in both cell lines. A low DNA synthesis rate and weak apoptosis were observed in quiescent cancer cells treated with CPEs. Hesperidin and narirutin, the predominant flavonoids found in citrus fruits, were not responsible for the observed biological activity, implicating alternative bioactive compounds. Notably, citric acid was identified as one of the compounds present in CPEs that acts as a cell cycle re-entry inhibitor. Citric acid exhibited a higher cell toxicity effect on PC-3 prostate cancer cells than non-cancerous RWPE-1 prostate cells, suggesting specific benefits for cancer treatment. In conclusion, CPE containing citric acid together with various bioactive compounds may be used as a chemopreventive agent for post-therapy cancer patients.


Asunto(s)
Citrus/química , Extractos Vegetales/farmacología , Neoplasias de la Próstata/fisiopatología , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Disacáridos/aislamiento & purificación , Disacáridos/farmacología , Flavanonas/aislamiento & purificación , Flavanonas/farmacología , Frutas/química , Hesperidina/aislamiento & purificación , Hesperidina/farmacología , Humanos , Masculino , Neoplasias de la Próstata/tratamiento farmacológico
17.
Heliyon ; 5(4): e01523, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31049434

RESUMEN

Solanesol, the precursor for the synthesis of coenzyme Q10, is currently recovered from tobacco leaves by conventional extraction techniques that require multiple purification steps and a large amount of organic solvents. We recently identified tomato leaves as an alternative source of solanesol and hypothesized that a high-pressure CO2 extraction could be used as a clean extraction process. The effect of CO2 pressure and temperature on the extraction of solanesol was determined to achieve high yield and purity. It was found that solanesol could be extracted efficiently by subcritical CO2 at 25 °C from tomato leaves. The extract contained 40% solanesol and other active compounds such as vitamin K1. A higher level of purity of 93% was achieved using a secondary purification step. Different conventional methods for solanesol extraction was compared to determine the most efficient technique for production of solanesol from tomato leaf. The highest yield of solanesol was achieved at nearly 1% dry weight with using subcritical CO2, which was superior to conventional methods.

18.
Crit Rev Biotechnol ; 39(1): 1-19, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29793354

RESUMEN

The primary objective of this review is to propose an approach for the biosynthesis of phylloquinone (vitamin K1) based upon its known sources, its role in photosynthesis and its biosynthetic pathway. The chemistry, health benefits, market, and industrial production of vitamin K are also summarized. Vitamin K compounds (K vitamers) are required for the normal function of at least 15 proteins involved in diverse physiological processes such as coagulation, tissue mineralization, inflammation, and neuroprotection. Vitamin K is essential for the prevention of Vitamin K Deficiency Bleeding (VKDB), especially in neonates. Increased vitamin K intake may also reduce the severity and/or risk of bone fracture, arterial calcification, inflammatory diseases, and cognitive decline. Consumers are increasingly favoring natural food and therapeutic products. However, the bulk of vitamin K products employed for both human and animal use are chemically synthesized. Biosynthesis of the menaquinones (vitamin K2) has been extensively researched. However, published research on the biotechnological production of phylloquinone is restricted to a handful of available articles and patents. We have found that microalgae are more suitable than plant cell cultures for the biosynthesis of phylloquinone. Many algae are richer in vitamin K1 than terrestrial plants, and algal cells are easier to manipulate. Vitamin K1 can be efficiently recovered from the biomass using supercritical carbon dioxide extraction.


Asunto(s)
Biotecnología/métodos , Vitamina K 1/metabolismo , Vitamina K/biosíntesis , Envejecimiento , Animales , Biomasa , Vías Biosintéticas , Coagulación Sanguínea , Fenómenos Químicos , Chlorophyta/metabolismo , Humanos , Ingeniería Metabólica , Plantas/metabolismo , Vitamina K/química , Vitamina K/fisiología , Vitamina K 1/química , Vitamina K 1/farmacología , Vitamina K 2/metabolismo , Sangrado por Deficiencia de Vitamina K/tratamiento farmacológico
19.
Adv Healthc Mater ; 8(1): e1801307, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30511808

RESUMEN

Considerable progress has been made in the field of microfluidics to develop complex systems for modeling human skin and dermal wound healing processes. While microfluidic models have attempted to integrate multiple cell types and/or 3D culture systems, to date they have lacked some elements needed to fully represent dermal wound healing. This paper describes a cost-effective, multicellular microfluidic system that mimics the paracrine component of early inflammation close to normal wound healing. Collagen and Matrigel are tested as materials for coating and adhesion of dermal fibroblasts and human umbilical vein endothelial cells (HUVECs). The wound-on-chip model consists of three interconnecting channels and is able to simulate wound inflammation by adding tumor necrosis factor alpha (TNF-α) or by triculturing with macrophages. Both the approaches significantly increase IL-1ß, IL-6, IL-8 in the supernatant (p < 0.05), and increases in cytokine levels are attenuated by cotreatment with an anti-inflammatory agent, Dexamethasone. Incorporation of M1 and M2 macrophages cocultured with fibroblasts and HUVECs leads to a stimulation of cytokine production as well as vascular structure formation, particularly with M2 macrophages. In summary, this wound-on-chip system can be used to model the paracrine component of the early inflammatory phase of wound healing and has the potential for the screening of anti-inflammatory compounds.


Asunto(s)
Microambiente Celular , Dermis/patología , Inflamación/patología , Dispositivos Laboratorio en un Chip , Modelos Biológicos , Cicatrización de Heridas , Técnicas de Cultivo de Célula , Diferenciación Celular/efectos de los fármacos , Citocinas/metabolismo , Dexametasona/farmacología , Dexametasona/uso terapéutico , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Inflamación/tratamiento farmacológico , Mediadores de Inflamación/metabolismo , Macrófagos/efectos de los fármacos , Miofibroblastos/efectos de los fármacos , Miofibroblastos/patología , Neovascularización Fisiológica/efectos de los fármacos , Factor de Necrosis Tumoral alfa
20.
ACS Appl Mater Interfaces ; 11(3): 2870-2879, 2019 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-30589525

RESUMEN

Injectable and phase-transitioning carriers from natural polysaccharides have great potential for the minimally invasive delivery of therapeutic proteins in the field of bone tissue engineering. In this study, a novel and highly viscous drug carrier was synthesized by a sequential process of deoxyribose polycondensation and esterification. The effect of synthesis parameters on the molecular weight, viscosity, and adhesion of the material was studied and correlated to temperature and time of polycondensation ( Tp and tp), time and temperature of esterification ( Te and te), and the molar ratio of the monomer ( R). The formulations were evaluated for molecular weight and distribution properties using GPC, chemical structures by FTIR and NMR spectra, and rheological properties using a rheometer. Formulations illustrated a wide range of viscosities (0.736 to 2225 Pa s), adhesion (0.896 to 58.45 N), and molecular weights (637 to 4216 Da), where viscosity was significantly reduced in the presence of low amounts of solvents (10-20%). The sustained release of BSA was observed over 42 days in vitro. The biocompatibility of poly(deoxyribose) isobutyrate (PDIB) as well as its potential as a bone morphogenetic protein delivery system was assessed in vivo using a rat ectopic bone model, where bone nodules were observed at 2 weeks. In summary, PDIB is a promising molecule with multiple applications for protein delivery, including for bone tissue engineering.


Asunto(s)
Materiales Biocompatibles/farmacología , Proteína Morfogenética Ósea 2/farmacología , Sistemas de Liberación de Medicamentos , Ingeniería de Tejidos , Materiales Biocompatibles/química , Proteína Morfogenética Ósea 2/química , Desoxirribosa/química , Portadores de Fármacos/química , Portadores de Fármacos/farmacología , Humanos , Isobutiratos/química , Reología , Viscosidad/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...