Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanoscale ; 16(16): 7926-7936, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38535752

RESUMEN

The degradation and aging of carbon felt electrodes is a main reason for the performance loss of Vanadium Redox Flow Batteries over extended operation time. In this study, the chemical mechanisms for carbon electrode degradation are investigated and distinct differences in the degradation mechanisms on positive and negative electrodes have been revealed. A combination of surface analysis techniques such as X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and Electrochemical Impedance Spectroscopy (EIS) was applied for this purpose. In addition to understanding the chemical and physical alterations of the aged electrodes, a thermal method for reactivating aged electrodes was developed. The reactivation process was successfully applied on artificially aged electrodes as well as on electrodes from a real-world industrial vanadium redox flow battery system. The aforementioned analysis methods provided insight and understanding into the chemical mechanisms of the reactivation procedure. By applying the reactivation method, the lifetime of vanadium redox flow batteries can be significantly extended.

2.
ChemSusChem ; : e202301659, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38517381

RESUMEN

Carbon-based electrodes are used in flow batteries to provide active centers for vanadium redox reactions. However, strong controversy exists about the exact origin of these centers. This study systematically explores the influence of structural and functional groups on the vanadium redox reactions at carbon surfaces. Pyridine, phenol and butyl containing groups are attached to carbon felt electrodes. To establish a unique comparison between the model and real-world behavior, both non-activated and commercially used thermally activated felts serve as a substrate. Results reveal enhanced half-cell performance in non-activated felt with introduced hydrophilic functionalities. However, this cannot be transferred to the thermally activated felt. Beyond a decrease in electrochemical activity, a reduced long-term stability can be observed. This work indicates that thermal treatment generates active sites that surpass the effect of functional groups and are even impeded by their introduction.

3.
ACS Appl Mater Interfaces ; 15(40): 46655-46667, 2023 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-37753951

RESUMEN

Membrane proteins are among the most difficult to study as they are embedded in the cellular membrane, a complex and fragile environment with limited experimental accessibility. To study membrane proteins outside of these environments, model systems are required that replicate the fundamental properties of the cellular membrane without its complexity. We show here a self-assembled lipid bilayer nanoarchitecture on a solid support that is stable for several days at room temperature and allows the measurement of insect olfactory receptors at the single-channel level. Using an odorant binding protein, we capture airborne ligands and transfer them to an olfactory receptor from Drosophila melanogaster (OR22a) complex embedded in the lipid membrane, reproducing the complete olfaction process in which a ligand is captured from air and transported across an aqueous reservoir by an odorant binding protein and finally triggers a ligand-gated ion channel embedded in a lipid bilayer, providing direct evidence for ligand capture and olfactory receptor triggering facilitated by odorant binding proteins. This model system presents a significantly more user-friendly and robust platform to exploit the extraordinary sensitivity of insect olfaction for biosensing. At the same time, the platform offers a new opportunity for label-free studies of the olfactory signaling pathways of insects, which still have many unanswered questions.

6.
Faraday Discuss ; 246(0): 487-507, 2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37436123

RESUMEN

Ion interactions with interfaces and transport in confined spaces, where electric double layers overlap, are essential in many areas, ranging from crevice corrosion to understanding and creating nano-fluidic devices at the sub 10 nm scale. Tracking the spatial and temporal evolution of ion exchange, as well as local surface potentials, in such extreme confinement situations is both experimentally and theoretically challenging. Here, we track in real-time the transport processes of ionic species (LiClO4) confined between a negatively charged mica surface and an electrochemically modulated gold surface using a high-speed in situ sensing Surface Forces Apparatus. With millisecond temporal and sub-micrometer spatial resolution we capture the force and distance equilibration of ions in the confinement of D ≈ 2-3 nm in an overlapping electric double layer (EDL) during ion exchange. Our data indicate that an equilibrated ion concentration front progresses with a velocity of 100-200 µm s-1 into a confined nano-slit. This is in the same order of magnitude and in agreement with continuum estimates from diffusive mass transport calculations. We also compare the ion structuring using high resolution imaging, molecular dynamics simulations, and calculations based on a continuum model for the EDL. With this data we can predict the amount of ion exchange, as well as the force between the two surfaces due to overlapping EDLs, and critically discuss experimental and theoretical limitations and possibilities.

7.
Sci Adv ; 9(28): eadf3902, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37436992

RESUMEN

Water-based lubricants provide lubrication of rubbing surfaces in many technical, biological, and physiological applications. The structure of hydrated ion layers adsorbed on solid surfaces that determine the lubricating properties of aqueous lubricants is thought to be invariable in hydration lubrication. However, we prove that the ion surface coverage dictates the roughness of the hydration layer and its lubricating properties, especially under subnanometer confinement. We characterize different hydration layer structures on surfaces lubricated by aqueous trivalent electrolytes. Two superlubrication regimes are observed with friction coefficients of 10-4 and 10-3, depending on the structure and thickness of the hydration layer. Each regime exhibits a distinct energy dissipation pathway and a different dependence to the hydration layer structure. Our analysis supports the idea of an intimate relationship between the dynamic structure of a boundary lubricant film and its tribological properties and offers a framework to study such relationship at the molecular level.

8.
ACS Appl Mater Interfaces ; 15(18): 22471-22484, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37125734

RESUMEN

The aeronautical industry demands facile lightweight and low-cost solutions to address climate crisis challenges. Graphene can be a valid candidate to tackle these functionalities, although its upscalability remains difficult to achieve. Consequently, graphene-related materials (GRM) are gathering massive attention as top-down graphite exfoliation processes at the industrial scale are feasible and often employed. In this work, environmentally friendly produced partially oxidized graphene nanosheets (POGNs) reduced by green solvents such as l-Ascorbic Acid to rGNs are proposed to deliver functional coatings based on a glass fiber composite or coated Al2024 T3 for strategic R&D questions in the aeronautical industry, i.e., low energy production, de-icing, and water uptake. In detail, energy efficiency in rGNs production is assessed via response-surface modeling of the powder conductivity, hence proposing an optimized reduction window. De-Icing functionality is verified by measuring the stable electrothermal property of an rGNs based composite over 24 h, and water uptake is elucidated by evaluating electrochemical and corrosion properties. Moreover, a mathematical model is proposed to depict the relation between the layers' sheet resistance and applied rGNs mass per area, which extends the system to other graphene-related materials, conductive two-dimensional materials, and various substrates. To conclude, the proposed system based on rGNs and epoxy paves the way for future multifunctional coatings, able to enhance the resistance of surfaces, such as airplane wings, in a flight harsh environment.

9.
J Phys Chem B ; 127(16): 3641-3650, 2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37072125

RESUMEN

The plasma membrane protects the interiors of cells from their surroundings and also plays a critical role in communication, sensing, and nutrient import. As a result, the cell membrane and its constituents are among the most important drug targets. Studying the cell membrane and the processes it facilitates is therefore crucial, but it is a highly complex environment that is difficult to access experimentally. Various model membrane systems have been developed to provide an environment in which membrane proteins can be studied in isolation. Among them, tethered bilayer lipid membranes (tBLMs) are a promising model system providing a solvent-free membrane environment which can be prepared by self-assembly, is resistant to mechanical disturbances and has a high electrical resistance. tBLMs are therefore uniquely suitable to study ion channels and charge transport processes. However, ion channels are often large, complex, multimeric structures and their function requires a particular lipid environment. In this paper, we show that SthK, a bacterial cyclic nucleotide gated (CNG) ion channel that is strongly dependent on the surrounding lipid composition, functions normally when embedded into a sparsely tethered lipid bilayer. As SthK has been very well characterized in terms of structure and function, it is well-suited to demonstrate the utility of tethered membrane systems. A model membrane system suitable for studying CNG ion channels would be useful, as this type of ion channel performs a wide range of physiological functions in bacteria, plants, and mammals and is therefore of fundamental scientific interest as well as being highly relevant to medicine.


Asunto(s)
Canales Iónicos , Técnicas Electroquímicas , Canales Iónicos/química , Membrana Dobles de Lípidos/química , Microscopía de Fuerza Atómica , AMP Cíclico/metabolismo , Bacterias/química , Bacterias/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo
10.
Materials (Basel) ; 16(4)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36837379

RESUMEN

An airplane is statistically struck by lightning every year. The need for lightweight aircraft to reduce the production of carbon dioxide has significantly reduced the presence of metals in favour of composites, resulting in lower lightning strike protection efficiency. In this perspective, we critically review the state of technologies in lightning strike protection solutions based on carbon materials, graphene, and MXenes. Furthermore, we comment on possible future research directions in the field.

11.
Nat Commun ; 14(1): 208, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639388

RESUMEN

Muscovite mica, KAl2(Si3Al)O10(OH)2, is a common layered phyllosilicate with perfect cleavage planes. The atomically flat surfaces obtained through cleaving lend themselves to scanning probe techniques with atomic resolution and are ideal to model minerals and clays. Despite the importance of the cleaved mica surfaces, several questions remain unresolved. It is established that K+ ions decorate the cleaved surface, but their intrinsic ordering - unaffected by the interaction with the environment - is not known. This work presents clear images of the K+ distribution of cleaved mica obtained with low-temperature non-contact atomic force microscopy (AFM) under ultra-high vacuum (UHV) conditions. The data unveil the presence of short-range ordering, contrasting previous assumptions of random or fully ordered distributions. Density functional theory (DFT) calculations and Monte Carlo simulations show that the substitutional subsurface Al3+ ions have an important role for the surface K+ ion arrangement.

12.
iScience ; 26(2): 105918, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36711244

RESUMEN

The light-driven reactions of photosynthesis as well as the mitochondrial power supply are located in specialized membranes containing a high fraction of redox-active lipids. In-plane charge transfer along such cell membranes is currently thought to be facilitated by the diffusion of redox lipids and proteins. Using a membrane on-a-chip setup, we show here that redox-active model membranes can sustain surprisingly high currents (mA) in-plane at distances of 25 µm. We also show the same phenomenon in free-standing monolayers at the air-water interface once the film is compressed such that the distance between redox centers is below 1 nm. Our data suggest that charge transfer within cell walls hosting electron transfer chains could be enabled by the coupling of redox-lipids via simultaneous electron and proton in-plane hopping, similar to conductive polymers. This has major implications for our understanding of the role of lipid membranes, suggesting that Q-lipid-containing membranes may be essential for evolving the complex redox machineries of life.

13.
Adv Colloid Interface Sci ; 311: 102814, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36446286

RESUMEN

Osteoarthritis is the most common degenerative and highly prevalent joint disease, characterized by progressive loss and destruction of articular cartilage. The damaged cartilage surface has an increased friction, which causes patients to suffer from serious pain. Restoring the lubrication ability of the joint is central to the treatment of osteoarthritis, a key topic in medical research. A variety of lubricants have been designed to reduce friction in joints and promote cartilage tissue repair to alleviate the symptoms of osteoarthritis. Herein, we review the recent progress of lubricants from the three perspectives of natural, bioinspired, and alternative strategies for osteoarthritis treatment, as well as the structural characterization and lubrication properties of such lubricants. Specifically, natural lubricants include glycosaminoglycans, lubricin and lipids in joints, bioinspired lubricants include scaffolds mimicking hyaluronic acid or lubricin, and alternative lubricants include modified lubricants based on hyaluronic acid, lipids, nanoparticles, and peptides. We also discuss the current challenges and long-term perspectives for further research in this area.


Asunto(s)
Cartílago Articular , Osteoartritis , Humanos , Ácido Hialurónico/química , Lubricantes/análisis , Lubricantes/química , Osteoartritis/tratamiento farmacológico , Cartílago Articular/química , Lípidos/análisis
14.
Langmuir ; 38(48): 14988-15000, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36426749

RESUMEN

Extremely robust cohesion triggered by calcium silicate hydrate (C-S-H) precipitation during cement hardening makes concrete one of the most commonly used man-made materials. Here, in this proof-of-concept study, we seek an additional nanoscale understanding of early-stage cohesive forces acting between hydrating model tricalcium silicate (C3S) surfaces by combining rheological and surface force measurements. We first used time-resolved small oscillatory rheology measurements (SAOSs) to characterize the early-stage evolution of the cohesive properties of a C3S paste and a C-S-H gel. SAOS revealed the reactive and viscoelastic nature of C3S pastes, in contrast with the nonreactive but still viscoelastic nature of the C-S-H gel, which proves a temporal variation in the cohesion during microstructural physicochemical rearrangements in the C3S paste. We further prepared thin films of C3S by plasma laser deposition (PLD) and demonstrated that these films are suitable for force measurements in the surface force apparatus (SFA). We measured surface forces acting between two thin C3S films exposed to water and subsequent in situ calcium silicate hydrate precipitation. With the SFA and SFA-coupled interferometric measurements, we resolved that C3S surface reprecipitation in water was associated with both increasing film thickness and progressively stronger adhesion (pull-off force). The lasting adhesion developing between the growing surfaces depended on the applied load, pull-off rate, and time in contact. These properties indicated the viscoelastic character of the soft, gel-like reprecipitated layer, pointing to the formation of C-S-H. Our findings confirm the strong cohesive properties of hydrated calcium silicate surfaces that, based on our preliminary SFA measurements, are attributed to sharp changes in the surface microstructure. In contact with water, the brittle and rough C3S surfaces with little contact area weather into soft, gel-like C-S-H nanoparticles with a much larger surface area available for forming direct contacts between interacting surfaces.

15.
Colloids Surf B Biointerfaces ; 220: 112906, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36252540

RESUMEN

Camptodactyly-arthropathy-coxa vara-pericarditis syndrome (CACP) is a joint disease caused by a lack of lubricin, resulting in failed lubrication and abnormal deposition at the cartilage surface. Injection of recombinant lubricin (R-LUB) is a promising approach to improve the symptoms of the disease. However, the antifouling and lubrication properties of R-LUB on cartilage surfaces have not yet been studied. Here, the adsorption and lubrication behavior of a type II collagen (COL II) mimicking the cartilage surface upon R-LUB injection was followed by surface plasmon resonance spectroscopy and surface forces apparatus. The results indicated R-LUB can bind well on a COL II surface and COL II/R-LUB complex layer exhibited ultralow nonspecific adsorption of BSA (3.25 ng/cm2) and LYS (0.26 ng/cm2) compared to those of the COL II layer (32.7 ng/cm2, 7.26 ng/cm2). Normal force measurements indicated there was always a repulsive force between COL II/R-LUB complex and different surfaces with -COO-, -NH3+, and -CH3 groups. Likewise, COL II had a high coefficient of friction (∼0.48) with surface damage at 2 µm/s and a wear pressure of 1.56 MPa, while that of COL II/R-LUB complex was down to ∼0.008-0.13 with surface damage at 13 µm/s and a wear pressure of 11.96 MPa, which was 7.7 times higher than for COL II. Hence, R-LUB may act as an anti-adhesive and lubrication layer adsorbed on COL II surfaces to prevent direct contact. Our findings provide fundamental insights into the adsorption and lubrication behavior for understanding biological lubrication, especially the potential supplementation of R-LUB for treating CACP disease.


Asunto(s)
Adhesivos , Colágeno , Lubrificación , Propiedades de Superficie , Fricción
16.
Biointerphases ; 17(5): 058501, 2022 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-36316165

RESUMEN

Protein-based underwater adhesives of marine organisms exhibit extraordinary binding strength in high salinity based on utilizing a variety of molecular interaction mechanisms. These include acid-base interactions, bidentate bindings or complex hydrogen bonding interactions, and electrochemical manipulation of interfacial bonding. In this Perspective, we briefly review recent progress in the field, and we discuss how interfacial electrochemistry can vary interfacial forces by concerted tuning of surface charging, hydration forces, and tuning of the interfacial ion concentration. We further discuss open questions, controversial findings, and new paths into understanding and utilizing redox-proteins and derived polymers for enhancing underwater adhesion in a complex salt environment.


Asunto(s)
Adhesivos , Bivalvos , Animales , Adhesivos/química , Bivalvos/química , Proteínas/química , Enlace de Hidrógeno , Polímeros
17.
Rev Sci Instrum ; 93(7): 073705, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35922291

RESUMEN

After almost 35 years of truly successful and transformative advancements, Atomic Force Microscopy (AFM) and, in general, scanning probe microscopy still have a fundamental limitation. This is constant drift and uncontrolled motion of probe and tested surface structures with respect to each other. This is inherently linked to the currently accepted design principle-only forces are measured, and distances are inferred from force measurements and piezo motions. Here, we demonstrate and test a new setup, which combines advantages of AFM and the surface forces apparatus, where absolute distances are measured by Multiple Beam White Light Interferometry (MBI). The novel and unique aspect of this apparatus consists of a synergistic combination of white light interferometric measurement of the absolute distance by direct reflection from an AFM cantilever and a fast distance clamping and drift correction using an IR-laser Fabry-Pérot interferometry-based approach (FPI). We demonstrate the capabilities of the system by force/distance measurements, benchmarking of distance control by direct comparison of MBI and FPI, and discuss potential applications of the system. This novel setup has the potential to form, monitor, and stress a single molecule or ligand/receptor bond on the molecular hook with sub-nanometer control of molecular distances over in principle infinite times.

18.
Materials (Basel) ; 15(13)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35806768

RESUMEN

To reduce the global emissions of CO2, the aviation industry largely relies on new light weight materials, which require multifunctional coatings. Graphene and its derivatives are particularly promising for combining light weight applications with functional coatings. Although they have proven to have outstanding properties, graphene and its precursor graphene oxide (GO) remain far from application at the industrial scale since a comprehensive protocol for mass production is still lacking. In this work, we develop and systematically describe a sustainable up-scaling process for the production of GO based on a three-step electrochemical exfoliation method. Surface characterization techniques (XRD, XPS and Raman) allow the understanding of the fast exfoliation rates obtained, and of high conductivities that are up to four orders of magnitude higher compared to GO produced via the commonly used modified Hummers method. Furthermore, we show that a newly developed mild thermal reduction at 250 °C is sufficient to increase conductivity by another order of magnitude, while limiting energy requirements. The proposed GO powder protocol suggests an up-scaling linear relation between the amount of educt surface and volume of electrolyte. This may support the mass production of GO-based coatings for the aviation industry, and address challenges such as low weight, fire, de-icing and lightning strike protection.

19.
Langmuir ; 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35605251

RESUMEN

Mineral nanoparticle suspensions with consolidating properties have been successfully applied in the restoration of weathered architectural surfaces. However, the design of these consolidants is usually stone-specific and based on trial and error, which prevents their robust operation for a wide range of highly heterogeneous monumental stone materials. In this work, we develop a facile and versatile method to systematically study the consolidating mechanisms in action using a surface forces apparatus (SFA) with real-time force sensing and an X-ray surface forces apparatus (X-SFA). We directly assess the mechanical tensile strength of nanosilica-treated single mineral contacts and show a sharp increase in their cohesion. The smallest used nanoparticles provide an order of magnitude stronger contacts. We further resolve the microstructures and forces acting during evaporation-driven, capillary-force-induced nanoparticle aggregation processes, highlighting the importance of the interactions between the nanoparticles and the confining mineral walls. Our novel SFA-based approach offers insight into nano- and microscale mechanisms of consolidating silica treatments, and it can aid the design of nanomaterials used in stone consolidation.

20.
ACS Appl Mater Interfaces ; 14(4): 6109-6119, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35050563

RESUMEN

Phosphate- or chromate-based industrially produced conversion layers, while effectively increasing adhesion for organic coatings and corrosion resistance, come at the cost of environmentally problematic and harmful treatment solutions and waste. In this respect, layered double hydroxide (LDH)-based conversion layers offer an environmentally benign alternative without toxicologically concerning compounds in the treatment solution. Here, we study an LDH conversion layer on Zn-Al-Mg-coated steel (ZM-coated steel), which was produced by immersion into a carbonate- and magnesium-containing alkaline solution. The mechanism and kinetics of the conversion layer formation were investigated with in situ open circuit potential measurements, cyclic voltammetry (CV), and scanning electron microscopy (SEM). Acceleration of the LDH layer formation through high convection in the treatment solution was found. This was attributed to a higher oxygen availability at the metal/solution interface because no diffusion-limited state during the layer formation is reached due to high convection. The importance of oxygen within the kinetics indicates a corrosion-like mechanism, with cathodic and anodic sites on the steel sample. The LDH formation happens by co-precipitation of ions present in the treatment solution and dissolved ions from the ZM-coated steel. With CV, SEM, and X-ray diffraction, the growth of the LDH conversion layer was investigated with respect to the immersion time. It was found that after 30 s, the sample surface was almost fully covered with an LDH layer, and with the increasing immersion time, the layer grows in thickness. Increased understanding on the kinetics and mechanism of the LDH conversion layer formation on ZM-coated steel gives rise to a targeted optimization of the treatment solution and process parameters.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...