Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Monit Assess ; 195(1): 164, 2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36445492

RESUMEN

Coastal sediments in the Mong Cai area were collected and analyzed for grain size, heavy metals, total organic carbon, and isotopes (210Pb, 226Ra, δ15N, δ13C) to assess sediment quality. The most common sediments were fine sand in surface sediment, very fine sand in core C1, and very coarse and coarse silt in core C2. The total organic carbon was highest in C2 next to the surface and lowest in C1, with content levels of 1.81%, 0.40%, and 0.31%, respectively. The chronology in C1 was 1877-2019 (142 years, 0-5 0 cm), with an average sedimentation rate of 0.71 cm/year. In C2, the chronology was 1944-2019 (75 years, 0-14 cm), with an average sedimentation rate of 0.27 cm/year. These δ13C and δ15N in the sediment reflect the source of the organic matter mix from the marine and terrigenous sediments. All studied heavy metals were lower than the ISQGs, with the exception of As in C1 and C2, which were higher. C1 showed a decline in As over time, while C2 As levels increased between 1996 and 2019. In terms of heavy metal pollution indexes, the geoaccumulation index (Igeo) showed that C1 and C2 were unpolluted to moderately polluted with As, with Li and Pb in C2; the enrichment factor (EF) was moderately enriched with As; the contamination factor (CF) was moderately contaminated (Pb, Cd, Fe, Mo, and Li) in C2 and C1 (Cd, As, Li) and considerably contaminated (As) in C2. The risk factor (ER) of As showed a moderate potential ecological risk in C2. The degree of contamination (CD) ranged from moderate to considerable (C1, C2), and the ecological risk (RI) was low. Although CD ranged from moderate (C1) to considerable (C2), most contamination was concentrated at the bottom of the cores. RI was low. The Mong Cai sediment quality does not currently affect the coastal area's ecosystem and fauna.


Asunto(s)
Metales Pesados , Arena , Ecosistema , Plomo , Vietnam , Monitoreo del Ambiente , Carbono
2.
Molecules ; 26(24)2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34946783

RESUMEN

In this report, we focus our effort to extract cellulose nanomaterials (CNs) from an agricultural cellulosic waste, Dragon Fruit foliage (DFF). DFF was first pretreated by several mechanical treatments and then bleached by chemical treatment to obtain bleached DFF. CNs were then produced from the hydrolysis of the bleached DFF catalyzed by sulfuric acid. We obtained CNs with a small diameter (50 to 130 nm) and length (100 to 500 nm) and a height of 3 to 10 nm. The CNs have a high crystallinity (crystallinity index 84.8%), high -COOH content (0.74 mmol·g-1), good thermal stability and a good Cu (II) adsorption capacity with an adsorption maximum of ~103 mg·g-1. These findings demonstrated the great potential of converting many agricultural cellulosic wastes into valuable cellulose nanomaterials.


Asunto(s)
Cactaceae/química , Celulosa/química , Nanopartículas/química , Hojas de la Planta/química
3.
Nanotechnology ; 32(46)2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34359057

RESUMEN

In this study, we report a facile and effective approach for large-scale production of nitrogen-doped TiO2nanocrystals (UNTs) by a combination of ultrasonic irradiation and electrochemistry at room temperature using NH4NO3electrolyte as the nitrogen source. The as-prepared UNTs were then characterized by x-ray diffraction, Raman spectroscopy, x-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and UV-visible diffuse reflectance spectroscopy. The results indicated that the nitrogen content of UNTs reached 9.3% and bandgap energy of 2.62 eV, thus gave the high photocatalytic degradation of methylene blue under visible light irradiation. The mechanism for the formation of UNTs by ultrasonic-assisted electrochemical approach was also proposed.

5.
ACS Appl Mater Interfaces ; 11(1): 1655-1664, 2019 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-30561192

RESUMEN

The ability of band offsets at multiferroic/metal and multiferroic/electrolyte interfaces in controlling charge transfer and thus altering the photoactivity performance has sparked significant attention in solar energy conversion applications. Here, we demonstrate that the band offsets of the two interfaces play the key role in determining charge transport direction in a downward self-polarized BFO film. Electrons tend to move to BFO/electrolyte interface for water reduction. Our experimental and first-principle calculations reveal that the presence of neodymium (Nd) dopants in BFO enhances the photoelectrochemical performance by reduction of the local electron-hole pair recombination sites and modulation of the band gap to improve the visible light absorption. This opens a promising route to the heterostructure design by modulating the band gap to promote efficient charge transfer.

6.
Nanoscale ; 8(34): 15795-801, 2016 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-27533610

RESUMEN

Ferroelectric photoelectrodes, other than conventional semiconductors, are alternative photo-absorbers in the process of water splitting. However, the capture of photons and efficient transfer of photo-excited carriers remain as two critical issues in ferroelectric photoelectrodes. In this work, we overcome the aforementioned issues by decorating the ferroelectric BiFeO3 (BFO) surface with Au nanocrystals, and thus improving the photoelectrochemical (PEC) performance of BFO film. We demonstrate that the internal field induced by the spontaneous polarization of BFO can (1) tune the efficiency of the photo-excited carriers' separation and charge transfer characteristics in bare BFO photoelectrodes, and (2) modulate an extra optical absorption within the visible light region, created by the surface plasmon resonance excitation of Au nanocrystals to capture more photons in the Au/BFO heterostructure. This study provides key insights for understanding the tunable features of PEC performance, composed of the heterostructure of noble metals and ferroelectric materials.

7.
Adv Mater ; 28(4): 764-70, 2016 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-26607052

RESUMEN

The coupling of the localized surface plasmon resonance of Au nanoparticles is utilized to deliver a visible-light stimulus to control conduction at the LaAlO3 /SrTiO3 interface. A giant photoresponse and the controllable metal-insulator transition are characterized at this heterointerface. This study paves a new route to optical control of the functionality at the heterointerfaces.

8.
Sci Rep ; 5: 15201, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26468972

RESUMEN

Predicting and understanding the cation distribution in spinels has been one of the most interesting problems in materials science. The present work investigates the effect of cation redistribution on the structural, electrical, optical and magnetic properties of mixed-valent inverse spinel NiCo2O4(NCO) thin films. It is observed that the films grown at low temperatures (T < 400 °C) exhibit metallic behavior while that grown at higher temperatures (T > 400 °C) are insulators with lower ferrimagnetic-paramagnetic phase transition temperature. So far, n-type Fe3O4 has been used as a conducting layer for the spinel thin films based devices and the search for a p-type counterpart still remains elusive. The inherent coexistence and coupling of ferrimagnetic order and the metallic nature in p-type NCO makes it a promising candidate for spintronic devices. Detailed X-ray Absorption and X-ray Magnetic Circular Dichroism studies revealed a strong correlation between the mixed-valent cation distribution and the resulting ferrimagnetic-metallic/insulating behavior. Our study clearly demonstrates that it is the concentration of Ni(3+)ions and the Ni(3+)-O(2-)Ni(2+) double exchange interaction that is crucial in dictating the metallic behavior in NCO ferrimagnet. The metal-insulator and the associated magnetic order-disorder transitions can be tuned by the degree of cation site disorder via growth conditions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...