Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(10): e31084, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38803945

RESUMEN

The study investigated the effectiveness of Mg/Al LDH-zeolite (MALZ) in immobilizing exchangeable Cr (e-Cr) within the soil. The research systematically evaluated various variables affecting the immobilization of e-Cr in contaminated soil (CS), including soil pH levels (ranging from 5.0 to 9.0), different weight ratios of MALZ (1 %, 3 %, and 5 %), durations of differing incubation periods (15, 30 and 45 days), and different SM content levels (30 %, 50 %, and 70 %). The initial concentration of Cr in the CS was maintained at 50 mg/kg. The investigation findings revealed that the optimal conditions for immobilizing the e-Cr were a soil pH of 5.0, an MALZ weight ratio of 3 %, an incubation period of 30 days, and an SM level of 70 %. Under these ideal conditions, the percentage of e-Cr within the CS decreased significantly, from 87.49 % (45.64 mg/kg) in the control treatment (CT) to just 19.82 % (10.08 mg/kg) when incubated with MALZ. The primary mechanisms responsible for immobilizing the e-Cr onto MALZ included pore filling, reduction processes, co-precipitation, organic interactions and electrostatic attractions leading to the formation of carbonate-bound complexes such as Cr(VI)-carbonate, Cr(III)-carbonate, and organic complexes. Surface functional groups on MALZ, housing iron and aluminium oxyhydroxides and silicon and oxygen elements, expedited these procedures. This study provided a valuable understanding of the mitigation of soils contaminated with chromium and contributed to understanding the relations between MALZ and the e-Cr in the soil. The discoveries carry substantial consequences for the advancement of efficient remediation technologies.

2.
Sci Rep ; 14(1): 11583, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773106

RESUMEN

The present investigation explores the efficacy of green algae Ulva lactuca biochar-sulfur (GABS) modified with H2SO4 and NaHCO3 in adsorbing methylene blue (MB) dye from aqueous solutions. The impact of solution pH, contact duration, GABS dosage, and initial MB dye concentration on the adsorption process are all methodically investigated in this work. To obtain a thorough understanding of the adsorption dynamics, the study makes use of several kinetic models, including pseudo-first order and pseudo-second order models, in addition to isotherm models like Langmuir, Freundlich, Tempkin, and Dubinin-Radushkevich. The findings of the study reveal that the adsorption capacity at equilibrium (qe) reaches 303.78 mg/g for a GABS dose of 0.5 g/L and an initial MB dye concentration of 200 mg/L. Notably, the Langmuir isotherm model consistently fits the experimental data across different GABS doses, suggesting homogeneous adsorption onto a monolayer surface. The potential of GABS as an efficient adsorbent for the extraction of MB dye from aqueous solutions is highlighted by this discovery. The study's use of kinetic and isotherm models provides a robust framework for understanding the intricacies of MB adsorption onto GABS. By elucidating the impact of various variables on the adsorption process, the research contributes valuable insights that can inform the design of efficient wastewater treatment solutions. The comprehensive analysis presented in this study serves as a solid foundation for further research and development in the field of adsorption-based water treatment technologies.


Asunto(s)
Carbón Orgánico , Azul de Metileno , Ulva , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Carbón Orgánico/química , Concentración de Iones de Hidrógeno , Cinética , Azul de Metileno/química , Azufre/química , Ulva/química , Agua/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos
3.
RSC Adv ; 13(41): 28753-28766, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37790093

RESUMEN

This study used CaFe2O4 nanoparticles as a catalyst for ozonation processes to degrade Acid Orange II (AOII) in aqueous solution. The study compared heterogeneous catalytic ozonation (CaFe2O4/O3) with ozone treatment alone (O3) at different pH values (3-11), catalyst dosages (0.25-2.0 g L-1), and initial AOII concentrations (100-500 mg L-1). The O3 alone and CaFe2O4/O3 systems nearly completely removed AOII's color. In the first 5 min, O3 alone had a color removal efficiency of 75.66%, rising to 92% in 10 min, whereas the CaFe2O4/O3 system had 81.49%, 94%, and 98% after 5, 10, and 20 min, respectively. The O3 and CaFe2O4/O3 systems degrade TOC most efficiently at pH 9 and better with 1.0 g per L CaFe2O4. TOC removal effectiveness reduced from 85% to 62% when the initial AOII concentration increased from 100 to 500 mg L-1. The study of degradation kinetics reveals a pseudo-first-order reaction mechanism significantly as the solution pH increased from 3 to 9. Compared to the O3 alone system, the CaFe2O4/O3 system has higher k values. At pH 9, the k value for the CaFe2O4/O3 system is 1.83 times higher than that of the O3 alone system. Moreover, increasing AOII concentration from 100 mg L-1 to 500 mg L-1 subsequently caused a decline in the k values. The experimental data match pseudo-first-order kinetics, as shown by R2 values of 0.95-0.99. AOII degradation involves absorption, ozone activation, and reactive species production based on the existence of CaO and FeO in the CaFe2O4 nanocatalyst. This catalyst can be effectively recycled multiple times.

4.
RSC Adv ; 11(31): 18881-18897, 2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35478660

RESUMEN

This study presents the modification of cassava root husk-derived biochar (CRHB) with ZnO nanoparticles (ZnO-NPs) for the simultaneous adsorption of As(iii), Cd(ii), Pb(ii) and Cr(vi). By conducting batch-mode experiments, it was concluded that 3% w/w was the best impregnation ratio for the modification of CRHB using ZnO-NPs, and was denoted as CRHB-ZnO3 in this study. The optimal conditions for heavy metal adsorption were obtained at a pH of 6-7, contact time of 60 min, and initial metal concentration of 80 mg L-1. The heavy metal adsorption capacities onto CRHB-ZnO3 showed the following tendency: Pb(ii) > Cd(ii) > As(iii) > Cr(vi). The total optimal adsorption capacity achieved in the adsorption of the 4 abovementioned metals reached 115.11 and 154.21 mg g-1 for CRHB and CRHB-ZnO3, respectively. For each Pb(ii), Cd(ii), As(iii), and Cr(vi) metal, the maximum adsorption capacities of CRHB-ZnO3 were 44.27, 42.05, 39.52, and 28.37 mg g-1, respectively, and those of CRHB were 34.47, 32.33, 26.42 and 21.89 mg g-1, respectively. In terms of kinetics, both the pseudo-first-order and the pseudo-second-order fit well with metal adsorption onto biochars with a high correlation coefficient of R 2, while the best isothermal description followed the Langmuir model. As a result, the adsorption process of heavy metals onto biochars was chemisorption on homogeneous monolayers, which was mainly controlled by cation exchange and surface precipitation mechanisms due to enriched oxygen-containing surface groups with ZnO-NP modification of biochar. The FTIR and EDS analysis data confirmed the important role of oxygen-containing surface groups, which significantly contributed to removal of heavy metals with extremely high adsorption capacities, comparable with other studies. In conclusion, due to very high adsorption capacities for metal cations, the cassava root husk-derived biochar modified with ZnO-NPs can be applied as the alternative, inexpensive, non-toxic and highly effective adsorbent in the removal of various toxic cations.

5.
RSC Adv ; 11(28): 17007-17019, 2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35479705

RESUMEN

In the present study, experiments using zeolite and Mg/Al LDH-zeolite for immobilization of Cd and Pb ions in artificial soil were conducted. The conditions which affect Cd and Pb ion immobilization in soil were evaluated, namely soil pH (5-7), the mass ratio of adsorbents (1%, 3% and 5%), incubation time (15 days, 30 days and 45 days) and soil moisture (30%, 50% and 70%). The results indicated that the optimal soil pH, mass ratio of adsorbents, incubation time and soil moisture for immobilization of Cd and Pb ions by the adsorbent were, respectively, 7.0, 3%, 30 days and 70%. The exchangeable Cd ion content in the contaminated soil dropped from 22.17 mg kg-1 (87.65%) to 11.03 mg kg-1 (43.48%) and 6.47 mg kg-1 (26.36%) on incubation with zeolite and Mg/Al LDH-zeolite, respectively, while the exchangeable Pb content fell from 23.28 mg kg-1 (90.02%) to 14.12 mg kg-1 (54.04%) and 9.47 mg kg-1 (35.24%) using zeolite and Mg/Al LDH-zeolite as absorbents in contaminated soil, respectively. Fe-Mn oxide occluded (F2), carbonate bound (F3) and organically complexed (F4) were the main forms for immobilization of the exchangeable Cd and Pb when the zeolite and Mg/Al LDH-zeolite absorbents were separately cultivated into soil. Precipitation, co-precipitation and electrostatic attraction were the main mechanisms of exchangeable Cd and Pb immobilization onto the Mg/Al LDH-zeolite to form carbonate metals (CdCO3 and PbCO3). This was due to the surface functional groups of the adsorbent and the presence of Fe and Al oxyhydroxides, Mn oxides, and Si and O elements in the Mg/Al LDH-zeolite's constituents. The efficiency of Cd and Pb immobilization by the Mg/Al LDH-zeolite was higher than that by zeolite from 1.5 to 1.6 times. The Mg/Al LDH-zeolite showed an enhanced ability of exchangeable Cd and Pb immobilization in contaminated soil.

6.
RSC Adv ; 11(10): 5801-5814, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35423085

RESUMEN

In this study, two types of agricultural wastes, sugarcane bagasse (SB) and cassava root husks (CRHs), were used to fabricate biochars. The pristine biochars derived from SB and CRHs (SBB and CRHB, respectively) were modified using ZnO nanoparticles to generate modified biochars (SBB-ZnO and CRHB-ZnO, respectively) for the removal of Reactive Red 24 (RR24) from stimulated wastewater. Batch experiments were performed to evaluate the effects of ZnO nanoparticles' loading ratio, solution pH, contact time, and initial RR24 concentration on the RR24 adsorption capacity of biochars. The RR24 adsorption isotherm and kinetic data on SBB, SBB-ZnO3, CRHB, and CRHB-ZnO3 were analyzed. Results indicate that SB- and CRH-derived biochars with a ZnO nanoparticle loading ratio of 3 wt% could generate maximum adsorption capacities of RR24 thanks to the double growth on the BET surface of modified biochars. The RR24 adsorption capacities of CRHB-ZnO3 and SBB-ZnO3 reached 81.04 and 105.24 mg g-1, respectively, which were much higher than those of pristine CRHB and SBB (66.19 and 76.14, respectively) at an initial RR24 concentration of 250 mg L-1, pH 3, and contact time of 60 min. The adsorption of RR24 onto biochars agreed well with the pseudo-first-order model and the Langmuir isotherm. The RR24 adsorption capacity on modified biochars, which were reused after five adsorption-desorption cycles showed no insignificant drop. The main adsorption mechanisms of RR24 onto biochars were controlled by electrostatic interactions between biochars' surface positively charged functional groups with azo dye anions, pore filling, hydrogen bonding formation, and π-π interaction.

7.
RSC Adv ; 11(26): 15871-15884, 2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35481214

RESUMEN

In this study, the Fe-containing tailings (Fe-TO) ore was reutilized and enriched with FeCl3 as a heterogeneous catalyst for the Fenton process to degrade the organic dyes from aqueous solution. The determinants of the heterogeneous catalytic Fenton system which included iron modification ratio, solution pH, catalyst dosage, H2O2 dosage and initial concentration of organic dyes were systematically investigated. The modification ratio of 15% (w/w of iron), pH of 3, MFe-TO15 dosage of 0.5 g L-1 and H2O2 dosage of 840 mg L-1 were chosen as the best operational conditions for Fenton oxidation of organic dyes. The decolorization efficiency of both MB and RhB by MFe-TO15/H2O2 was higher than that of Fe-TO/H2O2 by about two times. The kinetic study showed the degradation of organic dyes well fitted the pseudo-first-order kinetic model with apparent constant rate values (K d) following the same sequence as the degradation efficiency of organic dyes. The degradation mechanism of dyes could be attributed to adsorption due to the good-development in textural properties of the iron modified catalyst (MFe-TO) with an increase in BET surface area, pore volume and pore diameter of, respectively, 2, 5 and 5 times and leaching iron through homogeneous Fenton reaction. However, the oxidation process occurring on the MFe-TO15's surface by heterogeneous Fenton reaction which enhanced decomposition of H2O2 for continuous generation of hydroxyl radicals was the main mechanism. The key role of *OH radical in oxidation of organic dyes was further ascertained by the remarkable drop in the decolorization of both organic dyes when the various radical-scavengers, including tert-butanol and chloride were supplemented into Fenton systems. A good stability of the catalyst was obtained through leaching test with low leaching iron ratio. The applied modified catalyst remained stable through three consecutive runs. From these findings, it can be concluded that the modified material can be applied as a feasible, inexpensive and highly effective catalyst for removal of persistent organic compounds from wastewater.

8.
Sci Rep ; 10(1): 3634, 2020 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-32107469

RESUMEN

This study presents the removal of phosphate from aqueous solution using a new silver nanoparticles-loaded tea activated carbon (AgNPs-TAC) material. In order to reduce costs, the tea activated carbon was produced from tea residue. Batch adsorption experiments were conducted to evaluate the effects of impregnation ratio of AgNPs and TAC, pH solution, contact time, initial phosphate concentration and dose of AgNPs-AC on removing phosphate from aqueous solution. Results show that the best conditions for phosphate adsorption occurred at the impregnation ratio AgNPs/TAC of 3% w/w, pH 3, and contact time lasting 150 min. The maximum adsorption capacity of phosphate on AgNPs-TAC determined by the Langmuir model was 13.62 mg/g at an initial phosphate concentration of 30 mg/L. The adsorption isotherm of phosphate on AgNPs-TAC fits well with both the Langmuir and Sips models. The adsorption kinetics data were also described well by the pseudo-first-order and pseudo-second-order models with high correlation coefficients of 0.978 and 0.966, respectively. The adsorption process was controlled by chemisorption through complexes and ligand exchange mechanisms. This study suggests that AgNPs-TAC is a promising, low cost adsorbent for phosphate removal from aqueous solution.


Asunto(s)
Camellia sinensis/química , Carbón Orgánico/química , Restauración y Remediación Ambiental/métodos , Nanopartículas del Metal/química , Fosfatos/química , Plata/química , Adsorción , Restauración y Remediación Ambiental/instrumentación , Cinética , Hojas de la Planta/química , Preparaciones de Plantas/química , Contaminantes del Agua/química
9.
Environ Technol ; 40(24): 3200-3215, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29676969

RESUMEN

Heavy metal contamination of crop lands surrounding mines in North Vietnam is a major environmental issue for both farmers and the population as a whole. Technology for the production of biochar at a village and household level has been successfully introduced into Vietnamese villages. This study was undertaken to determine if rice straw biochar produced in simple drum ovens could remediate contaminated land. Tests were also carried out to determine if biochar and apatite mixed together could be more effective than biochar alone. Incubation trials were carried out over 90 days in pots to determine the total changes in exchangeable Cd, Pb and Zn. Detailed tests were carried out to determine the mechanisms that bound the heavy metals to the biochar. It was found that biochar at 5% (BC5) and the mixture of biochar and apatite at 3% (BCA3) resulted in the greatest reduction of exchangeable forms of Cd, Pb and Zn. The increase in soil pH caused by adding biochar and apatite created more negative charge on the soil surface that promoted Pb, Zn and Cd adsorption. Heavy metals were mainly bound in the organic, Fe/Mn and carbonate fractions of the biochar and the mixture of biochar and apatite by either ion exchange, adsorption, dissolution/precipitation and through substitution of cations in large organic molecules.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Carbón Orgánico , Minerales , Suelo , Vietnam
10.
Environ Technol ; 40(6): 683-692, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29161983

RESUMEN

This study investigated the potential of removing ammonium ([Formula: see text]) from aqueous solutions using corncob based on modified biochar (MBCC) in the fixed-bed column. Corncob biochar was soaked in a mixture of HNO3 6.0 M and NaOH 0.3 M to prepare active binding sites for ammonium removal. The effect of initial ammonium concentrations (10-40 mg/L), flow rates (1-9 mL/min) and MBCC fixed-bed heights (8-24 cm) on the breakthrough characteristics of the adsorption system were studied. The results showed that the highest adsorption capacity of fix-bed column, the breakthrough time and value of Ct/Co were 12.83 mg/g, 480 min and 0.862 ± 0.025 at 10 mg/L of initial ammonium concentration, 8 cm of MBCC fixed-bed height and 3 mL/min of flow rate, respectively. The breakthrough curve model in this study also indicated that all Yoon-Nelson, Thomas and Adam-Bohart models well fit with the experimental data with a high R2. The results also proved that MBCC can be used as a potential adsorbent for eliminating [Formula: see text] in the fixed-bed column. The saturated MBCC was also regenerated and reused consecutively for four cycles. The usage of mixture of NaOH and NaCl in recovering MBCC was better than NaCl only.


Asunto(s)
Compuestos de Amonio , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Carbón Orgánico , Zea mays
11.
J Environ Manage ; 241: 535-548, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30318157

RESUMEN

Calcium carbonate (CaCO3)-enriched biomaterial derived from freshwater mussel shells (FMS) was used as a non-porous biosorbent to explore the characteristics and mechanisms of cadmium adsorption in aqueous solution. The adsorption mechanism was proposed by comparing the FMS properties before and after adsorption alongside various adsorption studies. The FMS biosorbent was characterized using nitrogen adsorption/desorption isotherm, X-ray diffraction, scanning electron microscopy with energy dispersive spectroscopy, Fourier-transform infrared spectroscopy, and point of zero charge. The results of batch experiments indicated that FMS possessed an excellent affinity to Cd(II) ions within solutions pH higher than 4.0. An increase in ionic strength resulted in a significant decrease in the amount of Cd(II) adsorbed onto FMS. Kinetic study demonstrated that the adsorption process quickly reached equilibrium at approximately 60 min. The FMS biosorbent exhibited the Langmuir maximum adsorption capacity as follows: 18.2 mg/g at 10 °C < 26.0 mg/g at 30 °C < 28.6 mg/g at 50 °C. The Cd(II) adsorption process was irreversible, spontaneous (-ΔG°), endothermic (+ΔH°), and more random (+ΔS°). Selective order (mmol/g) of metal cations followed as Pb2+ > Cd2+ > Cu2+ > Cr3+ > Zn2+. For column experiments, the highest Thomas adsorption capacity (7.86 mg/g) was achieved at a flow rate (9 mL/min), initial Cd(II) concentration (10 mg/L), and bed height (5 cm). The Cd(II) removal by FMS was regarded as non-activated chemisorption that occurred very rapidly (even at a low temperature) with a low magnitude of activation energy. Primary adsorption mechanism was surface precipitation. Cadmium precipitated in the primary (Cd,Ca)CO3 form with a calcite-type structure on the FMS surface. A crust of rhombohedral crystals on the substrate was observed by SEM. Freshwater mussel shells have the potential as a renewable adsorbent to remove cadmium from water.


Asunto(s)
Cadmio , Contaminantes Químicos del Agua , Adsorción , Carbonato de Calcio , Concentración de Iones de Hidrógeno , Cinética
12.
Sci Total Environ ; 579: 612-619, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27890415

RESUMEN

Ammonium pollution in groundwater and surface water is of major concern in many parts of the world due to the danger it poses to the environment and people's health. This study focuses on the development of a low cost adsorbent, specifically a modified biochar prepared from corncob. Evaluated here is the efficiency of this new material for removing ammonium from synthetic water (ammonium concentration from 10 to 100mg/L). The characteristics of the modified biochar were determined by Brunauer-Emmett-Teller (BET) test, Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). It was found that ammonium adsorption on modified biochar strongly depended on pH. Adsorption kinetics of NH4+-N using modified biochar followed the pseudo-second order kinetic model. Both Langmuir and Sips adsorption isotherm models could simulate well the adsorption behavior of ammonium on modificated biochar. The highest adsorption capacity of 22.6mg NH4+-N/g modified biochar was obtained when the biochar was modified by soaking it in HNO3 6M and NaOH 0.3M for 8h and 24h, respectively. The high adsorption capacity of the modified biochar suggested that it is a promising adsorbent for NH4+-N remediation from water.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA