Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36499418

RESUMEN

Mycothiol (MSH), the major cellular thiol in Mycobacterium tuberculosis (Mtb), plays an essential role in the resistance of Mtb to various antibiotics and oxidative stresses. MshC catalyzes the ATP-dependent ligation of 1-O-(2-amino-2-deoxy-α-d-glucopyranosyl)-d-myo-inositol (GlcN-Ins) with l-cysteine (l-Cys) to form l-Cys-GlcN-Ins, the penultimate step in MSH biosynthesis. The inhibition of MshC is lethal to Mtb. In the present study, five new cysteinyl-sulfonamides were synthesized, and their binding affinity with MshC was evaluated using a thermal shift assay. Two of them bind the target with EC50 values of 219 and 231 µM. Crystal structures of full-length MshC in complex with these two compounds showed that they were bound in the catalytic site of MshC, inducing dramatic conformational changes of the catalytic site compared to the apo form. In particular, the observed closure of the KMSKS loop was not detected in the published cysteinyl-sulfamoyl adenosine-bound structure, the latter likely due to trypsin treatment. Despite the confirmed binding to MshC, the compounds did not suppress Mtb culture growth, which might be explained by the lack of adequate cellular uptake. Taken together, these novel cysteinyl-sulfonamide MshC inhibitors and newly reported full-length apo and ligand-bound MshC structures provide a promising starting point for the further development of novel anti-tubercular drugs targeting MshC.


Asunto(s)
Ligasas , Mycobacterium tuberculosis , Proteínas Bacterianas/metabolismo , Cisteína/metabolismo , Glicopéptidos/química , Inositol/metabolismo , Ligasas/metabolismo , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/metabolismo , Sulfonamidas/farmacología
2.
RSC Chem Biol ; 3(8): 1013-1027, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35974998

RESUMEN

Polyomaviruses are a family of ubiquitous double-stranded DNA viruses many of which are human pathogens. These include BK polyomavirus which causes severe urinary tract infection in immunocompromised patients and Merkel cell polyomavirus associated with aggressive cancers. The small genome of polyomaviruses lacks conventional drug targets, and no specific drugs are available at present. Here we focus on the main structural protein VP1 of BK polyomavirus which is responsible for icosahedral capsid formation. To provide a foundation towards rational drug design, we crystallized truncated VP1 pentamers and subjected them to a high-throughput screening for binding drug-like fragments through a direct X-ray analysis. To enable a highly performant screening, rigorous optimization of the crystallographic pipeline and processing with the latest generation PanDDA2 software were necessary. As a result, a total of 144 binding hits were established. Importantly, the hits are well clustered in six surface pockets. Three pockets are located on the outside of the pentamer and map on the regions where the 'invading' C-terminal arm of another pentamer is attached upon capsid assembly. Another set of three pockets is situated within the wide pore along the five-fold axis of the VP1 pentamer. These pockets are situated at the interaction interface with the minor capsid protein VP2 which is indispensable for normal functioning of the virus. Here we systematically analyse the three outside pockets which are highly conserved across various polyomaviruses, while point mutations in these pockets are detrimental for viral replication. We show that one of the pockets can accommodate antipsychotic drug trifluoperazine. For each pocket, we derive pharmacophore features which enable the design of small molecules preventing the interaction between VP1 pentamers and therefore inhibiting capsid assembly. Our data lay a foundation towards a rational development of first-in-class drugs targeting polyomavirus capsid.

3.
Commun Biol ; 5(1): 883, 2022 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-36038645

RESUMEN

To correctly aminoacylate tRNALeu, leucyl-tRNA synthetase (LeuRS) catalyzes three reactions: activation of leucine by ATP to form leucyl-adenylate (Leu-AMP), transfer of this amino acid to tRNALeu and post-transfer editing of any mischarged product. Although LeuRS has been well characterized biochemically, detailed structural information is currently only available for the latter two stages of catalysis. We have solved crystal structures for all enzymatic states of Neisseria gonorrhoeae LeuRS during Leu-AMP formation. These show a cycle of dramatic conformational changes, involving multiple domains, and correlate with an energetically unfavorable peptide-plane flip observed in the active site of the pre-transition state structure. Biochemical analyses, combined with mutant structural studies, reveal that this backbone distortion acts as a trigger, temporally compartmentalizing the first two catalytic steps. These results unveil the remarkable effect of this small structural alteration on the global dynamics and activity of the enzyme.


Asunto(s)
Leucina-ARNt Ligasa , ARN de Transferencia de Leucina , Catálisis , Dominio Catalítico , Leucina-ARNt Ligasa/química , Leucina-ARNt Ligasa/genética , Leucina-ARNt Ligasa/metabolismo , Péptidos , ARN de Transferencia de Leucina/metabolismo
4.
Int J Mol Sci ; 22(15)2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34360555

RESUMEN

Human cytosolic prolyl-tRNA synthetase (HcProRS) catalyses the formation of the prolyl-tRNAPro, playing an important role in protein synthesis. Inhibition of HcProRS activity has been shown to have potential benefits in the treatment of fibrosis, autoimmune diseases and cancer. Recently, potent pyrazinamide-based inhibitors were identified by a high-throughput screening (HTS) method, but no further elaboration was reported. The pyrazinamide core is a bioactive fragment found in numerous clinically validated drugs and has been subjected to various modifications. Therefore, we applied a virtual screening protocol to our in-house library of pyrazinamide-containing small molecules, searching for potential novel HcProRS inhibitors. We identified a series of 3-benzylaminopyrazine-2-carboxamide derivatives as positive hits. Five of them were confirmed by a thermal shift assay (TSA) with the best compounds 3b and 3c showing EC50 values of 3.77 and 7.34 µM, respectively, in the presence of 1 mM of proline (Pro) and 3.45 µM enzyme concentration. Co-crystal structures of HcProRS in complex with these compounds and Pro confirmed the initial docking studies and show how the Pro facilitates binding of the ligands that compete with ATP substrate. Modelling 3b into other human class II aminoacyl-tRNA synthetases (aaRSs) indicated that the subtle differences in the ATP binding site of these enzymes likely contribute to its potential selective binding of HcProRS. Taken together, this study successfully identified novel HcProRS binders from our anti-tuberculosis in-house compound library, displaying opportunities for repurposing old drug candidates for new applications such as therapeutics in HcProRS-related diseases.


Asunto(s)
Adenosina Trifosfato/metabolismo , Aminoacil-ARNt Sintetasas/antagonistas & inhibidores , Bioensayo/métodos , Simulación por Computador , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Pirazinamida/química , Sitios de Unión , Cristalografía por Rayos X , Inhibidores Enzimáticos/aislamiento & purificación , Humanos , Ligandos , Modelos Moleculares , Conformación Proteica
5.
Int J Mol Sci ; 22(4)2021 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-33578647

RESUMEN

Aminoacyl-tRNA synthetases (aaRSs) catalyze the esterification of tRNA with a cognate amino acid and are essential enzymes in all three kingdoms of life. Due to their important role in the translation of the genetic code, aaRSs have been recognized as suitable targets for the development of small molecule anti-infectives. In this review, following a concise discussion of aaRS catalytic and proof-reading activities, the various inhibitory mechanisms of reported natural and synthetic aaRS inhibitors are discussed. Using the expanding repository of ligand-bound X-ray crystal structures, we classified these compounds based on their binding sites, focusing on their ability to compete with the association of one, or more of the canonical aaRS substrates. In parallel, we examined the determinants of species-selectivity and discuss potential resistance mechanisms of some of the inhibitor classes. Combined, this structural perspective highlights the opportunities for further exploration of the aaRS enzyme family as antimicrobial targets.


Asunto(s)
Aminoacil-ARNt Sintetasas/antagonistas & inhibidores , Antiinfecciosos/farmacología , Descubrimiento de Drogas , Inhibidores Enzimáticos/farmacología , Aminoácidos/metabolismo , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/metabolismo , Animales , Antiinfecciosos/química , Sitios de Unión/efectos de los fármacos , Inhibidores Enzimáticos/química , Humanos , Modelos Moleculares , Terapia Molecular Dirigida
6.
Eur J Med Chem ; 211: 113021, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33248851

RESUMEN

Leucyl-tRNA synthetase (LeuRS) is a clinically validated target for the development of antimicrobials. This enzyme catalyzes the formation of charged tRNALeu molecules, an essential substrate for protein translation. In the first step of catalysis LeuRS activates leucine using ATP, forming a leucyl-adenylate intermediate. Bi-substrate inhibitors that mimic this chemically labile phosphoanhydride-linked nucleoside have proven to be potent inhibitors of different members of the aminoacyl-tRNA synthetase family but, to date, they have demonstrated poor antibacterial activity. We synthesized a small series of 1,5-anhydrohexitol-based analogues coupled to a variety of triazoles and performed detailed structure-activity relationship studies with bacterial LeuRS. In an in vitro assay, Kiapp values in the nanomolar range were demonstrated. Inhibitory activity differences between the compounds revealed that the polarity and size of the triazole substituents affect binding. X-ray crystallographic studies of N. gonorrhoeae LeuRS in complex with all the inhibitors highlighted the crucial interactions defining their relative enzyme inhibitory activities. We further examined their in vitro antimicrobial properties by screening against several bacterial and yeast strains. While only weak antibacterial activity against M. tuberculosis was detected, the extensive structural data which were obtained could make these LeuRS inhibitors a suitable starting point towards further antibiotic development.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Inhibidores Enzimáticos/farmacología , Leucina-ARNt Ligasa/antagonistas & inhibidores , Alcoholes del Azúcar/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Antifúngicos/síntesis química , Antifúngicos/química , Candida albicans/efectos de los fármacos , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Leucina-ARNt Ligasa/aislamiento & purificación , Leucina-ARNt Ligasa/metabolismo , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Neisseria gonorrhoeae/enzimología , Staphylococcus aureus/efectos de los fármacos , Relación Estructura-Actividad , Alcoholes del Azúcar/síntesis química , Alcoholes del Azúcar/química
7.
Molecules ; 25(20)2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33081246

RESUMEN

Aminoacyl-tRNA synthetases (aaRSs) have become viable targets for the development of antimicrobial agents due to their crucial role in protein translation. A series of six amino acids were coupled to the purine-like 7-amino-5-hydroxymethylbenzimidazole nucleoside analogue following an optimized synthetic pathway. These compounds were designed as aaRS inhibitors and can be considered as 1,3-dideazaadenine analogues carrying a 2-hydroxymethyl substituent. Despite our intentions to obtain N1-glycosylated 4-aminobenzimidazole congeners, resembling the natural purine nucleosides glycosylated at the N9-position, we obtained the N3-glycosylated benzimidazole derivatives as the major products, resembling the respective purine N7-glycosylated nucleosides. A series of X-ray crystal structures of class I and II aaRSs in complex with newly synthesized compounds revealed interesting interactions of these "base-flipped" analogues with their targets. While the exocyclic amine of the flipped base mimics the reciprocal interaction of the N3-purine atom of aminoacyl-sulfamoyl adenosine (aaSA) congeners, the hydroxymethyl substituent of the flipped base apparently loses part of the standard interactions of the adenine N1 and the N6-amine as seen with aaSA analogues. Upon the evaluation of the inhibitory potency of the newly obtained analogues, nanomolar inhibitory activities were noted for the leucine and isoleucine analogues targeting class I aaRS enzymes, while rather weak inhibitory activity against the corresponding class II aaRSs was observed. This class bias could be further explained by detailed structural analysis.


Asunto(s)
Aminoacil-ARNt Sintetasas/ultraestructura , Bencimidazoles/química , Inhibidores Enzimáticos/síntesis química , Ribonucleósidos/química , Aminoacil-ARNt Sintetasas/antagonistas & inhibidores , Aminoacil-ARNt Sintetasas/química , Bencimidazoles/síntesis química , Bencimidazoles/farmacología , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Humanos , Neisseria gonorrhoeae/química , Neisseria gonorrhoeae/enzimología , Neisseria gonorrhoeae/patogenicidad , Conformación Proteica/efectos de los fármacos , Relación Estructura-Actividad
8.
Bioorg Med Chem ; 28(17): 115645, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32773091

RESUMEN

Despite of proven efficacy and well tolerability, albomycin is not used clinically due to scarcity of material. Several attempts have been made to increase the production of albomycin by chemical or biochemical methods. In the current study, we have synthesized the active moiety of albomycin δ1 and investigated its binding mode to its molecular target seryl-trna synthetase (SerRS). In addition, isoleucyl and aspartyl congeners were prepared to investigate whether the albomycin scaffold can be extrapolated to target other aminoacyl-tRNA synthetases (aaRSs) from both class I and class II aaRSs, respectively. The synthesized analogues were evaluated for their ability to inhibit the corresponding aaRSs by an in vitro aminoacylation experiment using purified enzymes. It was observed that the diastereomer having the 5'S, 6'R-configuration (nucleoside numbering) as observed in the crystal structure, exhibits excellent inhibitory activity in contrast to poor activity of its companion 5'R,6'S-diasteromer obtained as byproduct during synthesis. Moreover, the albomycin core scaffold seems well tolerated for class II aaRSs inhibition compared with class I aaRSs. To understand this bias, we studied X-ray crystal structures of SerRS in complex with the albomycin δ1 core structure 14a, and AspRS in complex with compound 16a. Structural analysis clearly showed that diastereomer selectivity is attributed to the steric restraints of the active site of SerRS and AspRS.


Asunto(s)
Inhibidores Enzimáticos/síntesis química , Ferricromo/análogos & derivados , Serina-ARNt Ligasa/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Ferricromo/síntesis química , Ferricromo/química , Ferricromo/metabolismo , Ligandos , Simulación de Dinámica Molecular , Serina-ARNt Ligasa/antagonistas & inhibidores , Trypanosoma brucei brucei/enzimología
9.
Bioorg Med Chem ; 28(15): 115580, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32631562

RESUMEN

Antimicrobial resistance is considered as one of the major threats for the near future as the lack of effective treatments for various infections would cause more deaths than cancer by 2050. The development of new antibacterial drugs is considered as one of the cornerstones to tackle this problem. Aminoacyl-tRNA synthetases (aaRSs) are regarded as good targets to establish new therapies. Apart from being essential for cell viability, they are clinically validated. Indeed, mupirocin, an isoleucyl-tRNA synthetase (IleRS) inhibitor, is already commercially available as a topical treatment for MRSA infections. Unfortunately, resistance developed soon after its introduction on the market, hampering its clinical use. Therefore, there is an urgent need for new cellular targets or improved therapies. Follow-up research by Cubist Pharmaceuticals led to a series of selective and in vivo active aminoacyl-sulfamoyl aryltetrazole inhibitors targeting IleRS (e.g. CB 168). Here, we describe the synthesis of new IleRS and TyrRS inhibitors based on the Cubist Pharmaceuticals compounds, whereby the central ribose was substituted for a tetrahydropyran ring. Various linkers were evaluated connecting the six-membered ring with the base-mimicking part of the synthesized analogues. Out of eight novel molecules, a three-atom spacer to the phenyltriazole moiety, which was established using azide-alkyne click chemistry, appeared to be the optimized linker to inhibit IleRS. However, 11 (Ki,app = 88 ± 5.3 nM) and 36a (Ki,app = 114 ± 13.5 nM) did not reach the same level of inhibitory activity as for the known high-affinity natural adenylate-intermediate analogue isoleucyl-sulfamoyl adenosine (IleSA, CB 138; Ki,app = 1.9 ± 4.0 nM) and CB 168, which exhibit a comparable inhibitory activity as the native ligand. Therefore, 11 was docked into the active site of IleRS using a known crystal structure of T. thermophilus in complex with mupirocin. Here, we observed the loss of the crucial 3'- and 4'- hydroxyl group interactions with the target enzyme compared to CB 168 and mupirocin, which we suggest to be the reason for the limited decrease in enzyme affinity. Despite the lack of antibacterial activity, we believe that structurally optimizing these novel analogues via a structure-based approach could ultimately result in aaRS inhibitors which would help to tackle the antibiotic resistance problem.


Asunto(s)
Antibacterianos/farmacología , Inhibidores Enzimáticos/farmacología , Isoleucina-ARNt Ligasa/antagonistas & inhibidores , Ácidos Sulfónicos/farmacología , Triazoles/farmacología , Tirosina-ARNt Ligasa/antagonistas & inhibidores , Antibacterianos/síntesis química , Antibacterianos/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Candida/efectos de los fármacos , Dominio Catalítico , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/metabolismo , Escherichia coli/efectos de los fármacos , Isoleucina-ARNt Ligasa/química , Isoleucina-ARNt Ligasa/metabolismo , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Mycobacterium tuberculosis/efectos de los fármacos , Unión Proteica , Staphylococcus aureus/efectos de los fármacos , Ácidos Sulfónicos/síntesis química , Ácidos Sulfónicos/metabolismo , Thermus thermophilus/enzimología , Triazoles/síntesis química , Triazoles/metabolismo , Tirosina-ARNt Ligasa/química , Tirosina-ARNt Ligasa/metabolismo
10.
ACS Chem Biol ; 15(2): 407-415, 2020 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-31869198

RESUMEN

The pyrimidine-containing Trojan horse antibiotics albomycin and a recently discovered cytidine-containing microcin C analog target the class II seryl- and aspartyl-tRNA synthetases (serRS and aspRS), respectively. The active components of these compounds are competitive inhibitors that mimic the aminoacyl-adenylate intermediate. How they effectively substitute for the interactions mediated by the canonical purine group is unknown. Employing nonhydrolyzable aminoacyl-sulfamoyl nucleosides substituting the base with cytosine, uracil, and N3-methyluracil the structure-activity relationship of the natural compounds was evaluated. In vitro using E. coli serRS and aspRS, the best compounds demonstrated IC50 values in the low nanomolar range, with a clear preference for cytosine or N3-methyluracil over uracil. X-ray crystallographic structures of K. pneumoniae serRS and T. thermophilus aspRS in complex with the compounds showed the contribution of structured waters and residues in the conserved motif-2 loop in defining base preference. Utilizing the N3-methyluracil bound serRS structure, MD simulations of the fully modified albomycin base were performed to identify the interacting network that drives stable association. This analysis pointed to key interactions with a methionine in the motif-2 loop. Interestingly, this residue is mutated to a glycine in a second serRS (serRS2) found in albomycin-producing actinobacteria possessing self-immunity to this antibiotic. A comparative study demonstrated that serRS2 is poorly inhibited by the pyrimidine-containing intermediate analogs, and an equivalent mutation in E. coli serRS significantly decreased the affinity of the cytosine congener. These findings highlight the crucial role of dynamics and solvation of the motif-2 loop in modulating the binding of the natural antibiotics.


Asunto(s)
Antibacterianos/metabolismo , Aspartato-ARNt Ligasa/antagonistas & inhibidores , Proteínas Bacterianas/antagonistas & inhibidores , Inhibidores Enzimáticos/metabolismo , Nucleósidos de Pirimidina/metabolismo , Serina-ARNt Ligasa/antagonistas & inhibidores , Secuencia de Aminoácidos , Antibacterianos/química , Aspartato-ARNt Ligasa/genética , Aspartato-ARNt Ligasa/metabolismo , Bacterias/enzimología , Bacterias/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Inhibidores Enzimáticos/química , Simulación de Dinámica Molecular , Estructura Molecular , Familia de Multigenes , Mutación , Unión Proteica , Nucleósidos de Pirimidina/química , Serina-ARNt Ligasa/genética , Serina-ARNt Ligasa/metabolismo , Relación Estructura-Actividad
11.
Antibiotics (Basel) ; 8(4)2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-31600972

RESUMEN

Emerging antibiotic resistance in pathogenic bacteria and reduction of compounds in the existing antibiotics discovery pipeline is the most critical concern for healthcare professionals. A potential solution aims to explore new or existing targets/compounds. Inhibition of bacterial aminoacyl-tRNA synthetase (aaRSs) could be one such target for the development of antibiotics. The aaRSs are a group of enzymes that catalyze the transfer of an amino acid to their cognate tRNA and therefore play a pivotal role in translation. Thus, selective inhibition of these enzymes could be detrimental to microbes. The 5'-O-(N-(L-aminoacyl)) sulfamoyladenosines (aaSAs) are potent inhibitors of the respective aaRSs, however due to their polarity and charged nature they cannot cross the bacterial membranes. In this work, we increased the lipophilicity of these existing aaSAs in an effort to promote their penetration through the bacterial membrane. Two strategies were followed, either attaching a (permanent) alkyl moiety at the adenine ring via alkylation of the N6-position or introducing a lipophilic biodegradable prodrug moiety at the alpha-terminal amine, totaling eight new aaSA analogues. All synthesized compounds were evaluated in vitro using either a purified Escherichia coli aaRS enzyme or in presence of total cellular extract obtained from E. coli. The prodrugs showed comparable inhibitory activity to the parent aaSA analogues, indicating metabolic activation in cellular extracts, but had little effect on bacteria. During evaluation of the N6-alkylated compounds against different microbes, the N6-octyl containing congener 6b showed minimum inhibitory concentration (MIC) of 12.5 µM against Sarcina lutea while the dodecyl analogue 6c displayed MIC of 6.25 µM against Candida albicans.

12.
J Biol Chem ; 294(31): 11863-11875, 2019 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-31201270

RESUMEN

Only a small portion of human immunodeficiency virus type 1 (HIV-1) particles entering the host cell results in productive infection, emphasizing the importance of identifying the functional virus population. Because integration of viral DNA (vDNA) is required for productive infection, efficient vDNA detection is crucial. Here, we use click chemistry to label viruses with integrase coupled to eGFP (HIVIN-eGFP) and visualize vDNA. Because click labeling with 5-ethynyl-2'-deoxyuridine is hampered by intense background staining of the host nucleus, we opted for developing HIV-1 reverse transcriptase (RT)-specific 2'-deoxynucleoside analogs that contain a clickable triple bond. We synthesized seven propargylated 2'-deoxynucleosides and tested them for lack of cytotoxicity and viral replication inhibition, RT-specific primer extension and incorporation kinetics in vitro, and the capacity to stain HIV-1 DNA. The triphosphate of analog A5 was specifically incorporated by HIV-1 RT, but no vDNA staining was detected during infection. Analog A3 was incorporated in vitro by HIV-1 RT and human DNA polymerase γ and did enable specific HIV-1 DNA labeling. Additionally, A3 supported mitochondria-specific DNA labeling, in line with the in vitro findings. After obtaining proof-of-principle of RT-specific DNA labeling reported here, further chemical refinement is necessary to develop even more efficient HIV-1 DNA labels without background staining of the nucleus or mitochondria.


Asunto(s)
Química Clic , Desoxiuridina/análogos & derivados , Transcriptasa Inversa del VIH/metabolismo , VIH-1/fisiología , Replicación Viral , Alquinos/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cartilla de ADN/metabolismo , Desoxiuridina/metabolismo , Desoxiuridina/toxicidad , Transcriptasa Inversa del VIH/antagonistas & inhibidores , VIH-1/genética , Humanos , Cinética , Microscopía Confocal , ARN Viral/química , ARN Viral/metabolismo
13.
Eur J Med Chem ; 174: 252-264, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31048140

RESUMEN

The superfamily of adenylate-forming enzymes all share a common chemistry. They activate a carboxylate group, on a specific substrate, by catalyzing the formation of a high energy mixed phosphoanhydride-linked nucleoside intermediate. Members of this diverse enzymatic family play key roles in a variety of metabolic pathways and therefore many have been regarded as drug targets. A generic approach to inhibit such enzymes is the use of non-hydrolysable sulfur-based bioisosteres of the adenylate intermediate. Here we compare the activity of compounds containing a sulfamoyl and sulfonamide linker respectively. An improved synthetic strategy was developed to generate inhibitors containing the latter that target isoleucyl- (IleRS) and seryl-tRNA synthetase (SerRS), two structurally distinct representatives of Class I and II aminoacyl-tRNA synthetases (aaRSs). These enzymes attach their respective amino acid to its cognate tRNA and are indispensable for protein translation. Evaluation of the ability of the two similar isosteres to inhibit serRS revealed a remarkable difference, with an almost complete loss of activity for seryl-sulfonamide 15 (SerSoHA) compared to its sulfamoyl analogue (SerSA), while inhibition of IleRS was unaffected. To explain these observations, we have determined a 2.1 Šcrystal structure of Klebsiella pneumoniae SerRS in complex with SerSA. Using this structure as a template, modelling of 15 in the active site predicts an unfavourable eclipsed conformation. We extended the same modelling strategy to representative members of the whole adenylate-forming enzyme superfamily, and were able to disclose a new classification system for adenylating enzymes, based on their protein fold. The results suggest that, other than for the structural and functional orthologues of the Class II aaRSs, the O to C substitution within the sulfur-sugar link should generally preserve the inhibitory potency.


Asunto(s)
Adenosina/análogos & derivados , Aminoacil-ARNt Sintetasas/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Sulfonamidas/química , Adenosina/síntesis química , Aminoacil-ARNt Sintetasas/química , Aminoacilación , Bacillus subtilis/enzimología , Dominio Catalítico , Dickeya chrysanthemi/enzimología , Inhibidores Enzimáticos/síntesis química , Klebsiella pneumoniae/enzimología , Modelos Moleculares , Mycobacterium tuberculosis/enzimología , Sulfolobus/enzimología , Sulfonamidas/síntesis química , Thermus thermophilus/enzimología
14.
Eur J Med Chem ; 173: 154-166, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30995568

RESUMEN

Aminoacyl-tRNA synthetases (aaRSs) catalyse the ATP-dependent coupling of an amino acid to its cognate tRNA. Being vital for protein translation aaRSs are considered a promising target for the development of novel antimicrobial agents. 5'-O-(N-aminoacyl)-sulfamoyl adenosine (aaSA) is a non-hydrolysable analogue of the aaRS reaction intermediate that has been shown to be a potent inhibitor of this enzyme family but is prone to chemical instability and enzymatic modification. In an attempt to improve the molecular properties of this scaffold we synthesized a series of base substituted aaSA analogues comprising cytosine, uracil and N3-methyluracil targeting leucyl-, tyrosyl- and isoleucyl-tRNA synthetases. In in vitro assays seven out of the nine inhibitors demonstrated Kiapp values in the low nanomolar range. To complement the biochemical studies, X-ray crystallographic structures of Neisseria gonorrhoeae leucyl-tRNA synthetase and Escherichia coli tyrosyl-tRNA synthetase in complex with the newly synthesized compounds were determined. These highlighted a subtle interplay between the base moiety and the target enzyme in defining relative inhibitory activity. Encouraged by this data we investigated if the pyrimidine congeners could escape a natural resistance mechanism, involving acetylation of the amine of the aminoacyl group by the bacterial N-acetyltransferases RimL and YhhY. With RimL the pyrimidine congeners were less susceptible to inactivation compared to the equivalent aaSA, whereas with YhhY the converse was true. Combined the various insights resulting from this study will pave the way for the further rational design of aaRS inhibitors.


Asunto(s)
Aminoacil-ARNt Sintetasas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Nucleósidos/farmacología , Pirimidinas/farmacología , Aminoacil-ARNt Sintetasas/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/análisis , Inhibidores Enzimáticos/síntesis química , Escherichia coli/citología , Escherichia coli/enzimología , Estructura Molecular , Nucleósidos/análisis , Nucleósidos/síntesis química , Pirimidinas/análisis , Pirimidinas/síntesis química , Relación Estructura-Actividad
15.
Molecules ; 24(3)2019 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-30696094

RESUMEN

In vivo imaging of biological processes is an important asset of modern cell biology. Selectively reacting fluorophores herein are an important tool and click chemistry reactions take a large share in these events. 5-Ethynyl-2'-deoxyuridine (EdU) is well known for visualizing DNA replication, but does not show any selectivity for incorporation into DNA. Striving for specific visualization of virus replication, in particular HIV replication, a series of propargylated purine deoxynucleosides were prepared aiming for selective incorporation by HIV reverse transcriptase (RT). We here report on the synthesis and preliminary biological effects (cellular toxicity, HIV inhibitory effects, and feasibility of the click reaction) of these nucleoside analogues.


Asunto(s)
Colorantes Fluorescentes , Imagen Óptica , Nucleósidos de Purina , Línea Celular , Supervivencia Celular , Química Clic , Colorantes Fluorescentes/química , Expresión Génica , Genes Reporteros , VIH-1/efectos de los fármacos , VIH-1/fisiología , Humanos , Estructura Molecular , Imagen Óptica/métodos , Nucleósidos de Purina/química , Replicación Viral/efectos de los fármacos
16.
Eur J Med Chem ; 148: 384-396, 2018 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-29477072

RESUMEN

Aminoacyl-tRNA synthetases (aaRSs) are enzymes that precisely attach an amino acid to its cognate tRNA. This process, which is essential for protein translation, is considered a viable target for the development of novel antimicrobial agents, provided species selective inhibitors can be identified. Aminoacyl-sulfamoyl adenosines (aaSAs) are potent orthologue specific aaRS inhibitors that demonstrate nanomolar affinities in vitro but have limited uptake. Following up on our previous work on substitution of the base moiety, we evaluated the effect of the N3-position of the adenine by synthesizing the corresponding 3-deazaadenosine analogues (aaS3DAs). A typical organism has 20 different aaRS, which can be split into two distinct structural classes. We therefore coupled six different amino acids, equally targeting the two enzyme classes, via the sulfamate bridge to 3-deazaadenosine. Upon evaluation of the inhibitory potency of the obtained analogues, a clear class bias was noticed, with loss of activity for the aaS3DA analogues targeting class II enzymes when compared to the equivalent aaSA. Evaluation of the available crystallographic structures point to the presence of a conserved water molecule which could have importance for base recognition within class II enzymes, a property that can be explored in future drug design efforts.


Asunto(s)
Aminoacil-ARNt Sintetasas/antagonistas & inhibidores , Antiinfecciosos/química , Tubercidina/química , Aminoácidos/química , Diseño de Fármacos , Proteínas de Escherichia coli , Ácidos Sulfónicos/química , Tubercidina/farmacología
17.
Mol Pharm ; 14(5): 1726-1741, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28363028

RESUMEN

We recently found that indomethacin (IMC) can effectively act as a powerful crystallization inhibitor for polyethylene glycol 6000 (PEG) despite the fact that the absence of interactions between the drug and the carrier in the solid state was reported in the literature. However, in the present study, we investigate the possibility of drug-carrier interactions in the liquid state to explain the polymer crystallization inhibition effect of IMC. We also aim to discover other potential PEG crystallization inhibitors. Drug-carrier interactions in both liquid and solid state are characterized by variable temperature Fourier transform infrared spectroscopy (FTIR) and cross-polarization magic angle spinning 13C nuclear magnetic resonance spectroscopy (CP/MAS NMR). In the liquid state, FTIR data show evidence of the breaking of hydrogen bonding between IMC molecules to form interactions of the IMC monomer with PEG. The drug-carrier interactions are disrupted upon storage and polymer crystallization, resulting in segregation of IMC from PEG crystals that can be observed under polarized light microscopy. This process is further confirmed by 13C NMR since in the liquid state, when the IMC/PEG monomer units ratio is below 2:1, IMC signals are undetectable because of the loss of cross-polarization efficiency in the mobile IMC molecules upon attachment to PEG chains via hydrogen bonding. This suggests that each ether oxygen of the PEG unit can form hydrogen bonds with two IMC molecules. The NMR spectrum of IMC shows no change in solid dispersions with PEG upon storage, indicating the absence of interactions in the solid state, hence confirming previous studies. The drug-carrier interactions in the liquid state elucidate the crystallization inhibition effect of IMC on PEG as well as other semicrystalline polymers such as poloxamer and Gelucire. However, hydrogen bonding is a necessary but apparently not a sufficient condition for the polymer crystallization inhibition. Screening of crystallization inhibitors of semicrystalline polymers discovers numerous candidates that exhibit the same behavior as IMC, demonstrating a general pattern of polymer crystallization inhibition rather than a particular case. Furthermore, the crystallization inhibition effect of drugs on PEG is independent of the carrier molecular weight. These mechanistic findings on the formation and disruption of hydrogen bonds in semicrystalline dispersions can be extended to amorphous dispersions and are of significant importance for preparation of solid dispersions with consistent and reproducible physicochemical properties.


Asunto(s)
Indometacina/química , Rastreo Diferencial de Calorimetría , Enlace de Hidrógeno , Espectroscopía de Resonancia Magnética , Polietilenglicoles/química , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
18.
Eur J Med Chem ; 126: 101-109, 2017 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-27750144

RESUMEN

Previous efforts led to dicarboxamide derivatives like 1.3, comprising either an imidazole, pyrazine or fenyl ring as the central scaffold, with many congeners displaying strong inhibitory effects against dengue virus (DENV) in cell-based assays. Following up on some literature reports, the rationale was borne out to preserve the pending groups, now attached to either a 2,6-diaminopurine or 2,4-diaminoquinazoline scaffold. Synthetic efforts turned out less straightforward than expected, but yielded some new derivatives with low micromolar anti-DENV activity, albeit not devoid of cellular toxicity. The purine 14 proved the most potent compound for this series with an EC50 of 1.9 µM and a selectivity index of 58, while the quinazoline 18a displayed an EC50 of 2.6 µM with SI of only 2.


Asunto(s)
2-Aminopurina/análogos & derivados , Antivirales/química , Antivirales/farmacología , Virus del Dengue/efectos de los fármacos , Quinazolinas/química , Quinazolinas/farmacología , 2-Aminopurina/química , 2-Aminopurina/metabolismo , 2-Aminopurina/farmacología , Antivirales/metabolismo , Virus del Dengue/enzimología , Diseño de Fármacos , Simulación del Acoplamiento Molecular , Conformación Proteica , Quinazolinas/metabolismo , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/metabolismo
19.
J Am Chem Soc ; 138(48): 15690-15698, 2016 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-27934031

RESUMEN

Microcin C and related antibiotics are Trojan-horse peptide-adenylates. The peptide part is responsible for facilitated transport inside the sensitive cell, where it gets processed to release a toxic warhead-a nonhydrolyzable aspartyl-adenylate, which inhibits aspartyl-tRNA synthetase. Adenylation of peptide precursors is carried out by MccB THIF-type NAD/FAD adenylyltransferases. Here, we describe a novel microcin C-like compound from Bacillus amyloliquefaciens. The B. amyloliquefaciens MccB demonstrates an unprecedented ability to attach a terminal cytidine monophosphate to cognate precursor peptide in cellular and cell free systems. The cytosine moiety undergoes an additional modification-carboxymethylation-that is carried out by the C-terminal domain of MccB and the MccS enzyme that produces carboxy-SAM, which serves as a donor of the carboxymethyl group. We show that microcin C-like compounds carrying terminal cytosines are biologically active and target aspartyl-tRNA synthetase, and that the carboxymethyl group prevents resistance that can occur due to modification of the warhead. The results expand the repertoire of known enzymatic modifications of peptides that can be used to obtain new biological activities while avoiding or limiting bacterial resistance.


Asunto(s)
Antibacterianos/farmacología , Aspartato-ARNt Ligasa/antagonistas & inhibidores , Bacillus amyloliquefaciens/química , Bacteriocinas/farmacología , Inhibidores Enzimáticos/farmacología , Antibacterianos/química , Antibacterianos/aislamiento & purificación , Aspartato-ARNt Ligasa/genética , Aspartato-ARNt Ligasa/metabolismo , Bacteriocinas/química , Bacteriocinas/aislamiento & purificación , Biología Computacional , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/aislamiento & purificación , Estructura Molecular
20.
Eur J Med Chem ; 121: 158-168, 2016 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-27240271

RESUMEN

High-throughput screening of a subset of the CD3 chemical library (Centre for Drug Design and Discovery; KU Leuven) provided us with a lead compound 1, displaying low micromolar potency against dengue virus and yellow fever virus. Within a project aimed at discovering new inhibitors of flaviviruses, substitution of its central imidazole ring led to synthesis of variably substituted pyrazine dicarboxylamides and phthalic diamides, which were evaluated in cell-based assays for cytotoxicity and antiviral activity against the dengue virus (DENV) and yellow fever virus (YFV). Fourteen compounds inhibited DENV replication (EC50 ranging between 0.5 and 3.4 µM), with compounds 6b and 6d being the most potent inhibitors (EC50 0.5 µM) with selectivity indices (SI) > 235. Compound 7a likewise exhibited anti-DENV activity with an EC50 of 0.5 µM and an SI of >235. In addition, good antiviral activity of seven compounds in the series was also noted against the YFV with EC50 values ranging between 0.4 and 3.3 µM, with compound 6n being the most potent for this series with an EC50 0.4 µM and a selectivity index of >34. Finally, reversal of one of the central amide bonds as in series 13 proved deleterious to the inhibitory activity.


Asunto(s)
Virus del Dengue/efectos de los fármacos , Diamida/farmacología , Compuestos Heterocíclicos/farmacología , Virus de la Fiebre Amarilla/efectos de los fármacos , Animales , Antivirales/química , Antivirales/farmacología , Chlorocebus aethiops , Diamida/química , Descubrimiento de Drogas/métodos , Compuestos Heterocíclicos/química , Relación Estructura-Actividad , Células Vero , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...