Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Aging Cell ; : e14167, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38616780

RESUMEN

Down syndrome (DS) is characterized by lowered immune competence and premature aging. We previously showed decreased antibody response following SARS-CoV-2 vaccination in adults with DS. IgG1 Fc glycosylation patterns are known to affect the effector function of IgG and are associated with aging. Here, we compare total and anti-spike (S) IgG1 glycosylation patterns following SARS-CoV-2 vaccination in DS and healthy controls (HC). Total and anti-Spike IgG1 Fc N-glycan glycoprofiles were measured in non-exposed adults with DS and controls before and after SARS-CoV-2 vaccination by liquid chromatography-mass spectrometry (LC-MS) of Fc glycopeptides. We recruited N = 44 patients and N = 40 controls. We confirmed IgG glycosylation patterns associated with aging in HC and showed premature aging in DS. In DS, we found decreased galactosylation (50.2% vs. 59.0%) and sialylation (6.7% vs. 8.5%) as well as increased fucosylation (97.0% vs. 94.6%) of total IgG. Both cohorts showed similar bisecting GlcNAc of total and anti-S IgG1 with age. In contrast, anti-S IgG1 of DS and HC showed highly comparable glycosylation profiles 28 days post vaccination. The IgG1 glycoprofile in DS exhibits strong premature aging. The combination of an early decrease in IgG1 Fc galactosylation and sialylation and increase in fucosylation is predicted to reduce complement activity and decrease FcγRIII binding and subsequent activation, respectively. The altered glycosylation patterns, combined with decreased antibody concentrations, help us understand the susceptibility to severe infections in DS. The effect of premature aging highlights the need for individuals with DS to receive tailored vaccines and/or vaccination schedules.

2.
iScience ; 26(9): 107619, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37670790

RESUMEN

IgG antibodies are important mediators of vaccine-induced immunity through complement- and Fc receptor-dependent effector functions. Both are influenced by the composition of the conserved N-linked glycan located in the IgG Fc domain. Here, we compared the anti-Spike (S) IgG1 Fc glycosylation profiles in response to mRNA, adenoviral, and protein-based COVID-19 vaccines by mass spectrometry (MS). All vaccines induced a transient increase of antigen-specific IgG1 Fc galactosylation and sialylation. An initial, transient increase of afucosylated IgG was induced by membrane-encoding S protein formulations. A fucose-sensitive ELISA for antigen-specific IgG (FEASI) exploiting FcγRIIIa affinity for afucosylated IgG was used as an orthogonal method to confirm the LC-MS-based afucosylation readout. Our data suggest that vaccine-induced anti-S IgG glycosylation is dynamic, and although variation is seen between different vaccine platforms and individuals, the evolution of glycosylation patterns display marked overlaps.

3.
Front Immunol ; 14: 1087532, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36776883

RESUMEN

Of the four human immunoglobulin G (IgG) subclasses, IgG4 is considered the least inflammatory, in part because it poorly activates the complement system. Regardless, in IgG4 related disease (IgG4-RD) and in autoimmune disorders with high levels of IgG4 autoantibodies, the presence of these antibodies has been linked to consumption and deposition of complement components. This apparent paradox suggests that conditions may exist, potentially reminiscent of in vivo deposits, that allow for complement activation by IgG4. Furthermore, it is currently unclear how variable glycosylation and Fab arm exchange may influence the ability of IgG4 to activate complement. Here, we used well-defined, glyco-engineered monoclonal preparations of IgG4 and determined their ability to activate complement in a controlled system. We show that IgG4 can activate complement only at high antigen and antibody concentrations, via the classical pathway. Moreover, elevated or reduced Fc galactosylation enhanced or diminished complement activation, respectively, with no apparent contribution from the lectin pathway. Fab glycans slightly reduced complement activation. Lastly, we show that bispecific, monovalent IgG4 resulting from Fab arm exchange is a less potent activator of complement than monospecific IgG4. Taken together, these results imply that involvement of IgG4-mediated complement activation in pathology is possible but unlikely.


Asunto(s)
Enfermedades Autoinmunes , Inmunoglobulina G , Humanos , Activación de Complemento , Proteínas del Sistema Complemento , Autoanticuerpos
4.
EBioMedicine ; 87: 104408, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36529104

RESUMEN

BACKGROUND: Afucosylated IgG1 responses have only been found against membrane-embedded epitopes, including anti-S in SARS-CoV-2 infections. These responses, intrinsically protective through enhanced FcγRIIIa binding, can also trigger exacerbated pro-inflammatory responses in severe COVID-19. We investigated if the BNT162b2 SARS-CoV-2 mRNA also induced afucosylated IgG responses. METHODS: Blood from vaccinees during the first vaccination wave was collected. Liquid chromatography-Mass spectrometry (LC-MS) was used to study anti-S IgG1 Fc glycoprofiles. Responsiveness of alveolar-like macrophages to produce proinflammatory cytokines in presence of sera and antigen was tested. Antigen-specific B cells were characterized and glycosyltransferase levels were investigated by Fluorescence-Activated Cell Sorting (FACS). FINDINGS: Initial transient afucosylated anti-S IgG1 responses were found in naive vaccinees, but not in antigen-experienced ones. All vaccinees had increased galactosylated and sialylated anti-S IgG1. Both naive and antigen-experienced vaccinees showed relatively low macrophage activation potential, as expected, due to the low antibody levels for naive individuals with afucosylated IgG1, and low afucosylation levels for antigen-experienced individuals with high levels of anti-S. Afucosylation levels correlated with FUT8 expression in antigen-specific plasma cells in naive individuals. Interestingly, low fucosylation of anti-S IgG1 upon seroconversion correlated with high anti-S IgG levels after the second dose. INTERPRETATION: Here, we show that BNT162b2 mRNA vaccination induces transient afucosylated anti-S IgG1 responses in naive individuals. This observation warrants further studies to elucidate the clinical context in which potent afucosylated responses would be preferred. FUNDING: LSBR1721, 1908; ZonMW10430012010021, 09150161910033, 10430012010008; DFG398859914, 400912066, 390884018; PMI; DOI4-Nr. 3; H2020-MSCA-ITN 721815.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , Vacuna BNT162 , Inmunoglobulina G , COVID-19/prevención & control , SARS-CoV-2 , Anticuerpos Antivirales , Vacunación
5.
Front Immunol ; 13: 987151, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36189205

RESUMEN

Immunoglobulins G (IgG) and their Fc gamma receptors (FcγRs) play important roles in our immune system. The conserved N-glycan in the Fc region of IgG1 impacts interaction of IgG with FcγRs and the resulting effector functions, which has led to the design of antibody therapeutics with greatly improved antibody-dependent cell cytotoxicity (ADCC) activities. Studies have suggested that also N-glycosylation of the FcγRIII affects receptor interactions with IgG, but detailed studies of the interaction of IgG1 and FcγRIIIa with distinct N-glycans have been hindered by the natural heterogeneity in N-glycosylation. In this study, we employed comprehensive genetic engineering of the N-glycosylation capacities in mammalian cell lines to express IgG1 and FcγRIIIa with different N-glycan structures to more generally explore the role of N-glycosylation in IgG1:FcγRIIIa binding interactions. We included FcγRIIIa variants of both the 158F and 158V allotypes and investigated the key N-glycan features that affected binding affinity. Our study confirms that afucosylated IgG1 has the highest binding affinity to oligomannose FcγRIIIa, a glycan structure commonly found on Asn162 on FcγRIIIa expressed by NK cells but not monocytes or recombinantly expressed FcγRIIIa.


Asunto(s)
Inmunoglobulina G , Receptores de IgG , Animales , Citotoxicidad Celular Dependiente de Anticuerpos , Glicosilación , Mamíferos , Polisacáridos/metabolismo , Receptores de IgG/metabolismo
6.
EBioMedicine ; 81: 104109, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35752106

RESUMEN

BACKGROUND: Immunoglobulin G (IgG) antibodies serve a crucial immuno-protective function mediated by IgG Fc receptors (FcγR). Absence of fucose on the highly conserved N-linked glycan in the IgG Fc domain strongly enhances IgG binding and activation of myeloid and natural killer (NK) cell FcγRs. Although afucosylated IgG can provide increased protection (malaria and HIV), it also boosts immunopathologies in alloimmune diseases, COVID-19 and dengue fever. Quantifying IgG fucosylation currently requires sophisticated methods such as liquid chromatography-mass spectrometry (LC-MS) and extensive analytical skills reserved to highly specialized laboratories. METHODS: Here, we introduce the Fucose-sensitive Enzyme-linked immunosorbent assay (ELISA) for Antigen-Specific IgG (FEASI), an immunoassay capable of simultaneously quantitating and qualitatively determining IgG responses. FEASI is a two-tier immunoassay; the first assay is used to quantify antigen-specific IgG (IgG ELISA), while the second gives FcγRIIIa binding-dependent readout which is highly sensitive to both the IgG quantity and the IgG Fc fucosylation (FcγR-IgG ELISA). FINDINGS: IgG Fc fucosylation levels, independently determined by LC-MS and FEASI, in COVID-19 responses to the spike (S) antigen, correlated very strongly by simple linear regression (R2=0.93, p < 0.0001). The FEASI method was then used to quantify IgG levels and fucosylation in COVID-19 convalescent plasma which was independently validated by LC-MS. INTERPRETATION: FEASI can be reliably implemented to measure relative and absolute IgG Fc fucosylation and quantify binding of antigen-specific IgG to FcγR in a high-throughput manner accessible to all diagnostic and research laboratories. FUNDING: This work was funded by the Stichting Sanquin Bloedvoorziening (PPOC 19-08 and SQI00041) and ZonMW 10430 01 201 0021.


Asunto(s)
Fucosa , Inmunoglobulina G , Receptores de IgG , COVID-19/diagnóstico , COVID-19/terapia , Ensayo de Inmunoadsorción Enzimática/métodos , Fucosa/química , Fucosa/metabolismo , Humanos , Inmunización Pasiva , Fragmentos Fc de Inmunoglobulinas/química , Inmunoglobulina G/química , Receptores de IgG/química , Sueroterapia para COVID-19
7.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33893239

RESUMEN

Siglecs are a family of sialic acid-binding receptors expressed by cells of the immune system and a few other cell types capable of modulating immune cell functions upon recognition of sialoglycan ligands. While human Siglecs primarily bind to sialic acid residues on diverse types of glycoproteins and glycolipids that constitute the sialome, their fine binding specificities for elaborated complex glycan structures and the contribution of the glycoconjugate and protein context for recognition of sialoglycans at the cell surface are not fully elucidated. Here, we generated a library of isogenic human HEK293 cells with combinatorial loss/gain of individual sialyltransferase genes and the introduction of sulfotransferases for display of the human sialome and to dissect Siglec interactions in the natural context of glycoconjugates at the cell surface. We found that Siglec-4/7/15 all have distinct binding preferences for sialylated GalNAc-type O-glycans but exhibit selectivity for patterns of O-glycans as presented on distinct protein sequences. We discovered that the sulfotransferase CHST1 drives sialoglycan binding of Siglec-3/8/7/15 and that sulfation can impact the preferences for binding to O-glycan patterns. In particular, the branched Neu5Acα2-3(6-O-sulfo)Galß1-4GlcNAc (6'-Su-SLacNAc) epitope was discovered as the binding epitope for Siglec-3 (CD33) implicated in late-onset Alzheimer's disease. The cell-based display of the human sialome provides a versatile discovery platform that enables dissection of the genetic and biosynthetic basis for the Siglec glycan interactome and other sialic acid-binding proteins.


Asunto(s)
Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Análisis de Matrices Tisulares/métodos , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Mucina-1 , Polisacáridos/metabolismo , Sialiltransferasas/genética , Sialiltransferasas/metabolismo
8.
Glycobiology ; 31(3): 200-210, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32776095

RESUMEN

Aberrant mucin-type O-linked glycosylation is a common occurrence in cancer where the upregulation of sialyltransferases is often seen leading to the early termination of O-glycan chains. Mucin-type O-linked glycosylation is not limited to mucins and occurs on many cell surface glycoproteins including EGFR, where the number of sites can be limited. Upon EGF ligation, EGFR induces a signaling cascade and may also translocate to the nucleus where it directly regulates gene transcription, a process modulated by Galectin-3 and MUC1 in some cancers. Here, we show that upon EGF binding, breast cancer cells carrying different O-glycans respond by transcribing different gene expression signatures. MMP10, the principal gene upregulated when cells carrying sialylated core 1 glycans were stimulated with EGF, is also upregulated in ER-positive breast carcinoma reported to express high levels of ST3Gal1 and hence mainly core 1 sialylated O-glycans. In contrast, isogenic cells engineered to carry core 2 glycans upregulate CX3CL1 and FGFBP1 and these genes are upregulated in ER-negative breast carcinomas, also known to express longer core 2 O-glycans. Changes in O-glycosylation did not significantly alter signal transduction downstream of EGFR in core 1 or core 2 O-glycan expressing cells. However, striking changes were observed in the formation of an EGFR/galectin-3/MUC1/ß-catenin complex at the cell surface that is present in cells carrying short core 1-based O-glycans but absent in core 2 carrying cells.


Asunto(s)
Neoplasias de la Mama/metabolismo , Mucina-1/metabolismo , Neoplasias de la Mama/patología , Receptores ErbB/metabolismo , Femenino , Glicosilación , Humanos , Receptores de Estrógenos/metabolismo
9.
Mol Cell ; 75(2): 394-407.e5, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31227230

RESUMEN

The structural diversity of glycans on cells-the glycome-is vast and complex to decipher. Glycan arrays display oligosaccharides and are used to report glycan hapten binding epitopes. Glycan arrays are limited resources and present saccharides without the context of other glycans and glycoconjugates. We used maps of glycosylation pathways to generate a library of isogenic HEK293 cells with combinatorially engineered glycosylation capacities designed to display and dissect the genetic, biosynthetic, and structural basis for glycan binding in a natural context. The cell-based glycan array is self-renewable and reports glycosyltransferase genes required (or blocking) for interactions through logical sequential biosynthetic steps, which is predictive of structural glycan features involved and provides instructions for synthesis, recombinant production, and genetic dissection strategies. Broad utility of the cell-based glycan array is demonstrated, and we uncover higher order binding of microbial adhesins to clustered patches of O-glycans organized by their presentation on proteins.


Asunto(s)
Ingeniería Genética , Redes y Vías Metabólicas/genética , Polisacáridos/química , Proteínas/genética , Epítopos/genética , Epítopos/inmunología , Glicosilación , Glicosiltransferasas/genética , Células HEK293 , Humanos , Oligosacáridos/genética , Polisacáridos/clasificación , Polisacáridos/genética , Polisacáridos/inmunología , Proteínas/inmunología
10.
Nat Commun ; 10(1): 1785, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-31040271

RESUMEN

Lysosomal replacement enzymes are essential therapeutic options for rare congenital lysosomal enzyme deficiencies, but enzymes in clinical use are only partially effective due to short circulatory half-life and inefficient biodistribution. Replacement enzymes are primarily taken up by cell surface glycan receptors, and glycan structures influence uptake, biodistribution, and circulation time. It has not been possible to design and systematically study effects of different glycan features. Here we present a comprehensive gene engineering screen in Chinese hamster ovary cells that enables production of lysosomal enzymes with N-glycans custom designed to affect key glycan features guiding cellular uptake and circulation. We demonstrate distinct circulation time and organ distribution of selected glycoforms of α-galactosidase A in a Fabry disease mouse model, and find that an α2-3 sialylated glycoform designed to eliminate uptake by the mannose 6-phosphate and mannose receptors exhibits improved circulation time and targeting to hard-to-reach organs such as heart. The developed design matrix and engineered CHO cell lines enables systematic studies towards improving enzyme replacement therapeutics.


Asunto(s)
Lisosomas/enzimología , Animales , Células CHO , Cricetinae , Cricetulus , Modelos Animales de Enfermedad , Enfermedad de Fabry/tratamiento farmacológico , Enfermedad de Fabry/enzimología , Enfermedad de Fabry/metabolismo , Glicosilación , Masculino , Ratones , Ratones Noqueados , Proteínas Recombinantes/uso terapéutico , alfa-Galactosidasa/uso terapéutico
11.
Glycobiology ; 29(4): 307-319, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30726901

RESUMEN

Successful application of potent antibody-based T-cell engaging immunotherapeutic strategies is currently limited mainly to hematological cancers. One major reason is the lack of well-characterized antigens on solid tumors with sufficient cancer specific expression. Aberrantly O-glycosylated proteins contain promising cancer-specific O-glycopeptide epitopes suitable for immunotherapeutic applications, but currently only few examples of such antibody epitopes have been identified. We previously showed that chimeric antigen receptor T-cells directed towards aberrantly O-glycosylated MUC1 can control malignant growth in a mouse model. Here, we present a discovery platform for the generation of cancer-specific monoclonal antibodies targeting aberrant O-glycoproteins. The strategy is based on cancer cell lines engineered to homogeneously express the truncated Tn O-glycoform, the so-called SimpleCells. We used SimpleCells of different cancer origin to elicit monoclonal antibodies with selectivity for aberrant O-glycoproteins. For validation we selected and characterized one monoclonal antibody (6C5) directed to a Tn-glycopeptide in dysadherin (FXYD5), known to be upregulated in cancer and promote metastasis. While dysadherin is widely expressed also in normal cells, we demonstrated that the 6C5 epitope is specifically expressed in cancer.


Asunto(s)
Anticuerpos Monoclonales/análisis , Anticuerpos Monoclonales/biosíntesis , Glicoproteínas/metabolismo , Neoplasias/metabolismo , Animales , Anticuerpos Monoclonales/inmunología , Línea Celular Tumoral , Epítopos/inmunología , Epítopos/metabolismo , Glicoproteínas/inmunología , Humanos , Ratones , Neoplasias/inmunología , Neoplasias/patología
12.
Glycobiology ; 28(7): 542-549, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29596681

RESUMEN

Precise gene editing technologies are providing new opportunities to stably engineer host cells for recombinant production of therapeutic glycoproteins with different glycan structures. The glycosylation of recombinant therapeutics has long been a focus for both quality and consistency of products and for optimizing and improving pharmacokinetic properties as well as bioactivity. Structures of glycans on therapeutic glycoproteins are important for circulation, biodistribution and bioactivity. In particular, the latter has been demonstrated for therapeutic IgG1 antibodies where the core α1,6Fucose on the conserved N-glycan at Asn297 have remarkable dampening effects on antibody effector functions. We previously explored precise gene engineering and design options for N-glycosylation in CHO cells, and here we focus on engineering options possible for N-glycans on human IgG1. We demonstrate stable precise gene engineering of rather homogenous biantennary N-glycans with and without galactose (G0F, G2F) as well as the α2,6-linked monosialylated (G2FS1) glycoform. We were unable to introduce substantial disialylated glycoforms. Instead we engineered a novel monoantennary homogeneous N-glycan design with complete α2,6-linked sialic acid capping. All N-glycoforms may be engineered with and without core α1,6Fucose. The stably engineered design options enable production of human IgG antibodies with an array of distinct glycoforms for testing and selection of optimal design for different therapeutic applications.


Asunto(s)
Edición Génica/métodos , Inmunoglobulina G/genética , Procesamiento Proteico-Postraduccional , Animales , Células CHO , Cricetinae , Cricetulus , Glicosilación , Humanos , Inmunoglobulina G/química , Inmunoglobulina G/metabolismo , Polisacáridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...