Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 94(7)2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37493501

RESUMEN

A novel quadrature Doppler Backscattering (DBS) system has been developed and optimized for the E-band (60-90 GHz) frequency range using either O-mode or X-mode polarization in DIII-D plasmas. In general, DBS measures the amplitude of density fluctuations and their velocity in the lab frame. The system can simultaneously monitor both low-frequency turbulence (f < 10 MHz) and radiofrequency plasma density fluctuations over a selectable frequency range (20-500 MHz). Detection of high-frequency fluctuations has been demonstrated for low harmonics of the ion cyclotron frequency (e.g., 2fci ∼ 23 MHz) and externally driven high-frequency helicon waves (f = 476 MHz) using an adjustable frequency down conversion system. Importantly, this extends the application of DBS to a high-frequency spectral domain while maintaining important turbulence and flow measurement capabilities. This unique system has low phase noise, good temporal resolution (sub-millisecond), and excellent wavenumber coverage (kθ ∼ 1-20 cm-1 and kr ≲ 30 cm-1). As a demonstration, localized internal DIII-D plasma measurements are presented from turbulence (f ≤ 5 MHz), Alfvenic waves (f ∼ 6.5 MHz), ion cyclotron waves (f ≥ 20 MHz), as well as fluctuations around 476 MHz driven by an external high-power 476 MHz helicon wave antenna. In the future, helicon measurements will be used to validate GENRAY and AORSA modeling tools for prediction of helicon wave propagation, absorption, and current drive location for the newly installed helicon current drive system on DIII-D.

2.
Phys Rev Lett ; 119(20): 205002, 2017 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-29219335

RESUMEN

An experiment in a linear device, the Large Plasma Device, is used to study sheaths caused by an actively powered radio frequency (rf) antenna. The rf antenna used in the experiment consists of a single current strap recessed inside a copper box enclosure without a Faraday screen. A large increase in the plasma potential was observed along magnetic field lines that connect to the antenna limiter. The electric field from the spatial variation of the rectified plasma potential generated E[over →]×B[over →]_{0} flows, often referred to as convective cells. The presence of the flows generated by these potentials is confirmed by Mach probes. The observed convective cell flows are seen to cause the plasma in front of the antenna to flow away and cause a density modification near the antenna edge. These can cause hot spots and damage to the antenna and can result in a decrease in the ion cyclotron range of frequencies antenna coupling.

3.
Phys Rev Lett ; 117(5): 059901, 2016 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-27517795

RESUMEN

This corrects the article DOI: 10.1103/PhysRevLett.114.245002.

4.
Phys Rev Lett ; 116(23): 235101, 2016 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-27341240

RESUMEN

The dynamics of magnetic reconnection is investigated in a laboratory experiment consisting of two magnetic flux ropes, with currents slightly above the threshold for the kink instability. The evolution features periodic bursts of magnetic reconnection. To diagnose this complex evolution, volumetric three-dimensional data were acquired for both the magnetic and electric fields, allowing key field-line mapping quantities to be directly evaluated for the first time with experimental data. The ropes interact by rotating about each other and periodically bouncing at the kink frequency. During each reconnection event, the formation of a quasiseparatrix layer (QSL) is observed in the magnetic field between the flux ropes. Furthermore, a clear correlation is demonstrated between the quasiseparatrix layer and enhanced values of the quasipotential computed by integrating the parallel electric field along magnetic field lines. These results provide clear evidence that field lines passing through the quasiseparatrix layer are undergoing reconnection and give a direct measure of the nonlinear reconnection rate. The measurements suggest that the parallel electric field within the QSL is supported predominantly by electron pressure; however, resistivity may play a role.

5.
Rev Sci Instrum ; 87(2): 025105, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26931889

RESUMEN

In 1991 a manuscript describing an instrument for studying magnetized plasmas was published in this journal. The Large Plasma Device (LAPD) was upgraded in 2001 and has become a national user facility for the study of basic plasma physics. The upgrade as well as diagnostics introduced since then has significantly changed the capabilities of the device. All references to the machine still quote the original RSI paper, which at this time is not appropriate. In this work, the properties of the updated LAPD are presented. The strategy of the machine construction, the available diagnostics, the parameters available for experiments, as well as illustrations of several experiments are presented here.

6.
Phys Rev Lett ; 114(24): 245002, 2015 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-26196981

RESUMEN

Whistler mode chorus emissions with a characteristic frequency chirp are important magnetospheric waves, responsible for the acceleration of outer radiation belt electrons to relativistic energies and also for the scattering loss of these electrons into the atmosphere. Here, we report on the first laboratory experiment where whistler waves exhibiting fast frequency chirping have been artificially produced using a beam of energetic electrons launched into a cold plasma. Frequency chirps are only observed for a narrow range of plasma and beam parameters, and show a strong dependence on beam density, plasma density, and magnetic field gradient. Broadband whistler waves similar to magnetospheric hiss are also observed, and the parameter ranges for each emission are quantified.

7.
Artículo en Inglés | MEDLINE | ID: mdl-25871044

RESUMEN

It is demonstrated that a novel heating configuration applied to a large and cold magnetized plasma allows the study of avalanche phenomena under controlled conditions. Intermittent collapses of the plasma pressure profile, associated with unstable drift-Alfvén waves, exhibit a two-slope power-law spectrum with exponents near -1 at lower frequencies and in the range of -2 to -4 at higher frequencies. A detailed mapping of the spatiotemporal evolution of a single avalanche event is presented.

8.
Artículo en Inglés | MEDLINE | ID: mdl-25679725

RESUMEN

Generation of shear Alfvén waves by the Doppler-shifted ion-cyclotron-resonance (DICR) of a spiraling H(+) ion beam with magnetic fluctuations in a dual-species magnetized plasma with He(+) and H(+) ions has been investigated on the Large Plasma Device. The ambient plasma density and electron temperature were significantly enhanced by the beam. The Alfvén waves were left-handed polarized and traveled in the direction opposite to the ion beam. This is the first experimental demonstration of the DICR excitation of traveling shear Alfvén waves in a laboratory magnetoplasma.

9.
Phys Rev Lett ; 112(14): 145006, 2014 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-24765981

RESUMEN

Resonant interactions between energetic electrons and whistler mode waves are an essential ingredient in the space environment, and in particular in controlling the dynamic variability of Earth's natural radiation belts, which is a topic of extreme interest at the moment. Although the theory describing resonant wave-particle interaction has been present for several decades, it has not been hitherto tested in a controlled laboratory setting. In the present Letter we report on the first laboratory experiment to directly detect resonant pitch angle scattering of energetic (∼keV) electrons due to whistler mode waves. We show that the whistler mode wave deflects energetic electrons at precisely the predicted resonant energy, and that varying both the maximum beam energy, and the wave frequency, alters the energetic electron beam very close to the resonant energy.

10.
Rev Sci Instrum ; 81(10): 10D518, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21033873

RESUMEN

A scalable setup using injection by frequency conversion to establish a multipassing cavity for noncollective Thomson scattering on low density plasmas is presented. The cavity is shown to support >10 passes through the target volume with a 400% increase in energy on target versus a single-pass setup. Rayleigh scattering experiments were performed and demonstrate the viability of the cell to study low density plasmas of the order of 10(12)-10(13) cm(-3). A high-repetition, low-energy, single-pass Thomson scattering setup was also performed on the University of California, Los Angeles Large Plasma Device and shows that the multipass cavity could have a significant advantage over the high-repetition approach due to the cavity setup's inherently higher signal per shot.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA