Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(13): 8949-8960, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38501755

RESUMEN

Renewable ("green") hydrogen production through direct photoelectrochemical (PEC) water splitting is a potential key contributor to the sustainable energy mix of the future. We investigate the potential of indium phosphide (InP) as a reference material among III-V semiconductors for PEC and photovoltaic (PV) applications. The p(2 × 2)/c(4 × 2)-reconstructed phosphorus-terminated p-doped InP(100) (P-rich p-InP) surface is the focus of our investigation. We employ time-resolved two-photon photoemission (tr-2PPE) spectroscopy to study electronic states near the band gap with an emphasis on normally unoccupied conduction band states that are inaccessible through conventional single-photon emission methods. The study shows the complexity of the p-InP electronic band structure and reveals the presence of at least nine distinct states between the valence band edge and vacuum energy, including a valence band state, a surface defect state pinning the Fermi level, six unoccupied surface resonances within the conduction band, as well as a cluster of states about 1.6 eV above the CBM, identified as a bulk-to-surface transition. Furthermore, we determined the decay constants of five of the conduction band states, enabling us to track electron relaxation through the bulk and surface conduction bands. This comprehensive understanding of the electron dynamics in p-InP(100) lays the foundation for further exploration and surface engineering to enhance the properties and applications of p-InP-based III-V-compounds for, e.g., efficient and cost-effective PEC hydrogen production and highly efficient PV cells.

2.
Nat Commun ; 14(1): 6017, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37758705

RESUMEN

With the increasing pressure to decarbonize our society, green hydrogen has been identified as a key element in a future fossil fuel-free energy infrastructure. Solar water splitting through photoelectrochemical approaches is an elegant way to produce green hydrogen, but for low-value products like hydrogen, photoelectrochemical production pathways are difficult to be made economically competitive. A possible solution is to co-produce value-added chemicals. Here, we propose and demonstrate the in situ use of (photo)electrochemically generated H2 for the homogeneous hydrogenation of itaconic acid-a biomass-derived feedstock-to methyl succinic acid. Coupling these two processes offers major advantages in terms of stability and reaction flexibility compared to direct electrochemical hydrogenation, while minimizing the overpotential. An overall conversion of up to ~60% of the produced hydrogen is demonstrated for our coupled process, and a techno-economic assessment of our proposed device further reveals the benefit of coupling solar hydrogen production to a chemical transformation.

3.
Nat Commun ; 14(1): 991, 2023 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-36813780

RESUMEN

Green hydrogen has been identified as a critical enabler in the global transition to sustainable energy and decarbonized society, but it is still not economically competitive compared to fossil-fuel-based hydrogen. To overcome this limitation, we propose to couple photoelectrochemical (PEC) water splitting with the hydrogenation of chemicals. Here, we evaluate the potential of co-producing hydrogen and methyl succinic acid (MSA) by coupling the hydrogenation of itaconic acid (IA) inside a PEC water splitting device. A negative net energy balance is predicted to be achieved when the device generates only hydrogen, but energy breakeven can already be achieved when a small ratio (~2%) of the generated hydrogen is used in situ for IA-to-MSA conversion. Moreover, the simulated coupled device produces MSA with much lower cumulative energy demand than conventional hydrogenation. Overall, the coupled hydrogenation concept offers an attractive approach to increase the viability of PEC water splitting while at the same time decarbonizing valuable chemical production.

4.
Angew Chem Int Ed Engl ; 62(32): e202218850, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-36637348

RESUMEN

Hydrogen (H2 ) produced from renewables will have a growing impact on the global energy dynamics towards sustainable and carbon-neutral standards. The share of green H2 is still too low to meet the net-zero target, while the demand for high-quality hydrogen continues to rise. These factors amplify the need for economically viable H2 generation technologies. The present article aims at evaluating the existing technologies for high-quality H2 production based on solar energy. Technologies such as water electrolysis, photoelectrochemical and solar thermochemical water splitting, liquid metal reactors and plasma conversion utilize solar power directly or indirectly (as carbon-neutral electrons) and are reviewed from the perspective of their current development level, technical limitations and future potential.

5.
Nat Commun ; 13(1): 6231, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36266344

RESUMEN

Metal oxides are promising for photoelectrochemical (PEC) water splitting due to their robustness and low cost. However, poor charge carrier transport impedes their activity, particularly at low-bias voltage. Here we demonstrate the unusual effectiveness of phosphorus doping into bismuth vanadate (BiVO4) photoanode for efficient low-bias PEC water splitting. The resulting BiVO4 photoanode shows a separation efficiency of 80% and 99% at potentials as low as 0.6 and 1.0 VRHE, respectively. Theoretical simulation and experimental analysis collectively verify that the record performance originates from the unique phosphorus-doped BiVO4 configuration with concurrently mediated carrier density, trap states, and small polaron hopping. With NiFeOx cocatalyst, the BiVO4 photoanode achieves an applied bias photon-to-current efficiency of 2.21% at 0.6 VRHE. The mechanistic understanding of the enhancement of BiVO4 properties provides key insights in trap state passivation and polaron hopping for most photoactive metal oxides.

6.
Nat Commun ; 13(1): 6317, 2022 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-36274186

RESUMEN

When new covalent organic frameworks (COFs) are designed, the main efforts are typically focused on selecting specific building blocks with certain geometries and properties to control the structure and function of the final COFs. The nature of the linkage (imine, boroxine, vinyl, etc.) between these building blocks naturally also defines their properties. However, besides the linkage type, the orientation, i.e., the constitutional isomerism of these linkages, has rarely been considered so far as an essential aspect. In this work, three pairs of constitutionally isomeric imine-linked donor-acceptor (D-A) COFs are synthesized, which are different in the orientation of the imine bonds (D-C=N-A (DCNA) and D-N=C-A (DNCA)). The constitutional isomers show substantial differences in their photophysical properties and consequently in their photocatalytic performance. Indeed, all DCNA COFs show enhanced photocatalytic H2 evolution performance than the corresponding DNCA COFs. Besides the imine COFs shown here, it can be concluded that the proposed concept of constitutional isomerism of linkages in COFs is quite universal and should be considered when designing and tuning the properties of COFs.

7.
J Am Chem Soc ; 144(37): 17173-17185, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36074011

RESUMEN

We present a combined computational and experimental study of the adsorption of water on the Mo-doped BiVO4(010) surface, revealing how excess electrons influence the dissociation of water and lead to hydroxyl-induced alterations of the surface electronic structure. By comparing ambient pressure resonant photoemission spectroscopy (AP-ResPES) measurements with the results of first-principles calculations, we show that the dissociation of water on the stoichiometric Mo-doped BiVO4(010) surface stabilizes the formation of a small electron polaron on the VO4 tetrahedral site and leads to an enhanced concentration of localized electronic charge at the surface. Our calculations demonstrate that the dissociated water accounts for the enhanced V4+ signal observed in ambient pressure X-ray photoelectron spectroscopy and the enhanced signal of a small electron polaron inter-band state observed in AP-ResPES measurements. For ternary oxide surfaces, which may contain oxygen vacancies in addition to other electron-donating dopants, our study reveals the importance of defects in altering the surface reactivity toward water and the concomitant water-induced modifications to the electronic structure.

8.
Small ; 18(29): e2107976, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35732601

RESUMEN

The spatial distribution and concentration of lanthanide activator and sensitizer dopant ions are of key importance for the luminescence color and efficiency of upconverting nanoparticles (UCNPs). Quantifying dopant ion distributions and intermixing, and correlating them with synthesis methods require suitable analytical techniques. Here, X-ray photoelectron spectroscopy depth-profiling with tender X-rays (2000-6000 eV), providing probe depths ideally matched to UCNP sizes, is used to measure the depth-dependent concentration ratios of Er3+ to Yb3+ , [Er3+ ]/[Yb3+ ], in three types of UCNPs prepared using different reagents and synthesis methods. This is combined with data simulations and inductively coupled plasma-optical emission spectroscopy (ICP-OES) measurements of the lanthanide ion concentrations to construct models of the UCNPs' dopant ion distributions. The UCNP sizes and architectures are chosen to demonstrate the potential of this approach. Core-only UCNPs synthesized with XCl3 ·6H2 O precursors (ß-phase) exhibit a homogeneous distribution of lanthanide ions, but a slightly surface-enhanced [Er3+ ]/[Yb3+ ] is observed for UCNPs prepared with trifluroacetate precursors (α-phase). Examination of Yb-core@Er-shell UCNPs reveals a co-doped, intermixed region between the single-doped core and shell. The impact of these different dopant ion distributions on the UCNP's optical properties is discussed to highlight their importance for UCNP functionality and the design of efficient UCNPs.


Asunto(s)
Erbio , Fluoruros , Nanopartículas , Iterbio , Itrio , Cationes , Erbio/química , Fluoruros/química , Luminiscencia , Nanopartículas/química , Espectroscopía de Fotoelectrones , Rayos X , Iterbio/química , Itrio/química
9.
RSC Adv ; 12(12): 7055-7065, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-35424704

RESUMEN

A previously developed sustainable immobilization concept for photocatalysts based on cellulose as a renewable support material was applied for the photocatalytic hydrogenation of acetophenone (ACP) to 1-phenyl ethanol (PE). Four different TiO2 modifications (P25, P90, PC105, and PC500) were screened for the reaction showing good performance for PC25 and PC500. PC500 was selected for a detailed kinetic study to find the optimal operating conditions, and to obtain a better understanding of the photocatalytic pathway in relation to conventional and transfer hydrogenation. The kinetic data were analyzed using the pseudo-first-order reaction rate law. A complete conversion was obtained for ACP concentrations below 1 mM using a 360 nm filter and argon as the purge gas within 2-3 hours. High oxygen concentrations slow down or prevent the reaction, and wavelengths below 300 nm lead to side-products. By investigating the temperature dependency, an activation energy of 22 kJ mol-1 was determined which is lower than the activation energies for conventional and transfer hydrogenation, because the light activation of the photocatalyst turns the endothermic to an exothermic reaction. PC500 was immobilized onto the cellulose film showing a 37% lower activity that remains almost constant after multiple use.

10.
Adv Mater ; 34(19): e2201140, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35244311

RESUMEN

The semiconductor-liquid junction (SCLJ), the dominant place in photoelectrochemical (PEC) catalysis, determines the interfacial activity and stability of photoelectrodes, whcih directly affects the viability of PEC hydrogen generation. Though efforts dedicated in past decades, a challenge remains regarding creating a synchronously active and stable SCLJ, owing to the technical hurdles of simultaneously overlaying the two advantages. The present work demonstrates that creating an SCLJ with a unique configuration of the dual interfacial layers can yield BiVO4 photoanodes with synchronously boosted photoelectrochemical activity and operational stability, with values located at the top in the records of such photoelectrodes. The bespoke dual interfacial layers, accessed via grafting laser-generated carbon dots with phenolic hydroxyl groups (LGCDs-PHGs), are experimentally verified effective, not only in generating the uniform layer of LGCDs with covalent anchoring for inhibited photocorrosion, but also in activating, respectively, the charge separation and transfer in each layer for boosted charge-carrier kinetics, resulting in FeNiOOH-LGCDs-PHGs-MBVO photoanodes with a dual configuration with the photocurrent density of 6.08 mA cm-2 @ 1.23 VRHE , and operational stability up to 120 h @ 1.23 VRHE . Further work exploring LGCDs-PHGs from catecholic molecules warrants the proposed strategy as being a universal alternative for addressing the interfacial charge-carrier kinetics and operational stability of semiconductor photoelectrodes.

12.
Angew Chem Int Ed Engl ; 60(36): 19797-19803, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34043858

RESUMEN

Covalent organic frameworks (COFs) have emerged as an important class of organic semiconductors and photocatalysts for the hydrogen evolution reaction (HER)from water. To optimize their photocatalytic activity, typically the organic moieties constituting the frameworks are considered and the most suitable combinations of them are searched for. However, the effect of the covalent linkage between these moieties on the photocatalytic performance has rarely been studied. Herein, we demonstrate that donor-acceptor (D-A) type imine-linked COFs can produce hydrogen with a rate as high as 20.7 mmol g-1 h-1 under visible light irradiation, upon protonation of their imine linkages. A significant red-shift in light absorbance, largely improved charge separation efficiency, and an increase in hydrophilicity triggered by protonation of the Schiff-base moieties in the imine-linked COFs, are responsible for the improved photocatalytic performance.

13.
Nat Mater ; 20(6): 833-840, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33875852

RESUMEN

Light absorption in strongly correlated electron materials can excite electrons and holes into a variety of different states. Some of these excitations yield mobile charge carriers, whereas others result in localized states that cannot contribute to photocurrent. The photogeneration yield spectrum, ξ(λ), represents the wavelength-dependent ratio between the contributing absorption that ultimately generates mobile charge carriers and the overall absorption. Despite being a vital material property, it is not trivial to characterize. Here, we present an empirical method to extract ξ(λ) through optical and external quantum efficiency measurements of ultrathin films. We applied this method to haematite photoanodes for water photo-oxidation, and observed that it is self-consistent for different illumination conditions and applied potentials. We found agreement between the extracted ξ(λ) spectrum and the photoconductivity spectrum measured by time-resolved microwave conductivity. These measurements revealed that mobile charge carrier generation increases with increasing energy across haematite's absorption spectrum. Low-energy non-contributing absorption fundamentally limits the photoconversion efficiency of haematite photoanodes and provides an upper limit to the achievable photocurrent that is substantially lower than that predicted based solely on absorption above the bandgap. We extended our analysis to TiO2 and BiVO4 photoanodes, demonstrating the broader utility of the method for determining ξ(λ).

14.
ACS Appl Mater Interfaces ; 13(2): 2428-2436, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33426879

RESUMEN

There is an urgent need for cheap, stable, and abundant catalyst materials for photoelectrochemical water splitting. Manganese oxide is an interesting candidate as an oxygen evolution reaction (OER) catalyst, but the minimum thickness above which MnOx thin films become OER-active has not yet been established. In this work, ultrathin (<10 nm) manganese oxide films are grown on silicon by atomic layer deposition to study the origin of OER activity under alkaline conditions. We found that MnOx films thinner than 1.5 nm are not OER-active. X-ray photoelectron spectroscopy shows that this is due to electrostatic catalyst-support interactions that prevent the electrochemical oxidation of the manganese ions close to the interface with the support, while in thicker films, MnIII and MnIV oxide layers appear as OER-active catalysts after oxidation and electrochemical treatment. From our investigations, it can be concluded that one MnIII,IV-O monolayer is sufficient to establish oxygen evolution under alkaline conditions. The results of this study provide important new design criteria for ultrathin manganese oxide oxygen evolution catalysts.

15.
ACS Appl Energy Mater ; 3(10): 9523-9527, 2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-33134878

RESUMEN

Photoelectrochemical water splitting is a promising route to produce hydrogen from solar energy. However, corrosion of photoelectrodes remains a fundamental challenge for their implementation. Here, we reveal different dissolution behaviors of BiVO4 photoanode in pH-buffered borate, phosphate, and citrate (hole-scavenger) electrolytes, studied in operando employing an illuminated scanning flow cell. We demonstrate that decrease in photocurrents alone does not reflect the degradation of photoelectrodes. Changes in dissolution rates correlate to the evolution of surface chemistry and morphology. The correlative measurements on both sides of the liquid-semiconductor junction provide quantitative comparison and mechanistic insights into the degradation processes.

16.
ACS Appl Mater Interfaces ; 12(12): 13959-13970, 2020 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-32096970

RESUMEN

We assess a tandem photoelectrochemical cell consisting of a W:BiVO4 photoanode top absorber and a CuBi2O4 photocathode bottom absorber for overall solar water splitting. We show that the W:BiVO4 photoanode oxidizes water and produces oxygen at potentials ≥0.7 V vs RHE when CoPi is added as a cocatalyst. However, the CuBi2O4 photocathode does not produce a detectable amount of hydrogen from water reduction even when Pt or RuOx is added as a cocatalyst because the photocurrent primarily goes toward photocorrosion of CuBi2O4 rather than proton reduction. Protecting the CuBi2O4 photocathode with a CdS/TiO2 heterojunction and adding RuOx as a cocatalyst prevents photocorrosion and allows for photoelectrochemical production of hydrogen at potentials ≤0.3 V vs RHE. A tandem photoelectrochemical cell composed of a W:BiVO4/CoPi photoanode and a CuBi2O4/CdS/TiO2/RuOx photocathode produces hydrogen which can be detected under illumination at an applied bias of ≥0.4 V. Since the valence band of BiVO4 and conduction band of CuBi2O4 are adequately positioned to oxidize water and reduce protons, we hypothesize that the applied bias is required to overcome the relatively low photovoltages of the photoelectrodes, that is, the relatively low quasi-Fermi level splitting within BiVO4 and CuBi2O4. This work is the first experimental demonstration of hydrogen production from a BiVO4-CuBi2O4-based tandem cell and it provides important insights into the significance of photovoltage in tandem devices for overall water splitting, especially for cells containing CuBi2O4 photocathodes.

17.
Chem Sci ; 11(41): 11195-11204, 2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34094360

RESUMEN

p-Type CuBi2O4 is considered a promising metal oxide semiconductor for large-scale, economic solar water splitting due to the optimal band structure and low-cost fabrication. The main challenge in utilizing CuBi2O4 as a photoelectrode for water splitting, is that it must be protected from photo-corrosion in aqueous solutions, an inherent problem for Cu-based metal oxide photoelectrodes. In this work, several buffer layers (CdS, BiVO4, and Ga2O3) were tested between CuBi2O4 and conformal TiO2 as the protection layer. RuO x was used as the co-catalyst for hydrogen evolution. Factors that limit the photoelectrochemical performance of the CuBi2O4/TiO2/RuO x , CuBi2O4/CdS/TiO2/RuO x , CuBi2O4/BiVO4/TiO2/RuO x and CuBi2O4/Ga2O3/TiO2/RuO x heterojunction photoelectrodes were revealed by comparing photocurrents, band offsets, and directed charge transfer measured by modulated surface photovoltage spectroscopy. For CuBi2O4/Ga2O3/TiO2/RuO x photoelectrodes, barriers for charge transfer strongly limited the performance. In CuBi2O4/CdS/TiO2/RuO x , the absence of hole traps resulted in a relatively high photocurrent density and faradaic efficiency for hydrogen evolution despite the presence of pronounced deep defect states at the CuBi2O4/CdS interface. Hole trapping limited the performance moderately in CuBi2O4/BiVO4/TiO2/RuO x and strongly in CuBi2O4/TiO2/RuO x photoelectrodes. For the first time, our results show that hole trapping is a key factor that must be addressed to optimize the performance of CuBi2O4-based heterojunction photoelectrodes.

18.
Nat Commun ; 10(1): 2609, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31197140

RESUMEN

Addressing the intrinsic charge transport limitation of metal oxides has been of significance for pursuing viable PEC water splitting photoelectrodes. Growing a photoelectrode with conductive nanoobjects embedded in the matrix is promising for enhanced charge transport but remains a challenge technically. We herein show a strategy of embedding laser generated nanocrystals in BiVO4 photoanode matrix, which achieves photocurrent densities of up to 5.15 mA cm-2 at 1.23 VRHE (from original 4.01 mA cm-2) for a single photoanode configuration, and 6.22 mA cm-2 at 1.23 VRHE for a dual configuration. The enhanced performance by such embedding is found universal owing to the typical features of laser synthesis and processing of colloids (LSPC) for producing ligand free nanocrystals in desired solvents. This study provides an alternative to address the slow bulk charge transport that bothers most metal oxides, and thus is significant for boosting their PEC water splitting performance.

19.
Nat Commun ; 10(1): 2106, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-31068589

RESUMEN

Cuprous oxide (Cu2O) is a promising material for solar-driven water splitting to produce hydrogen. However, the relatively small accessible photovoltage limits the development of efficient Cu2O based photocathodes. Here, femtosecond time-resolved two-photon photoemission spectroscopy has been used to probe the electronic structure and dynamics of photoexcited charge carriers at the Cu2O surface as well as the interface between Cu2O and a platinum (Pt) adlayer. By referencing ultrafast energy-resolved surface sensitive spectroscopy to bulk data we identify the full bulk to surface transport dynamics for excited electrons rapidly localized within an intrinsic deep continuous defect band ranging from the whole crystal volume to the surface. No evidence of bulk electrons reaching the surface at the conduction band level is found resulting into a substantial loss of their energy through ultrafast trapping. Our results uncover main factors limiting the energy conversion processes in Cu2O and provide guidance for future material development.

20.
Phys Chem Chem Phys ; 21(9): 5086-5096, 2019 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-30762849

RESUMEN

The formation of heterostructures has proven to be a viable way to achieve high photoelectrochemical water splitting efficiencies with BiVO4 based photoanodes. Especially, cobalt and nickel based oxides are suitable low cost contact materials. However, the exact role of these contact materials is not yet completely understood because of the difficulty to individually quantify the effects of surface passivation, charge carrier separation and catalysis on the efficiency of a heterostructure. In this study, we used photoelectron spectroscopy in combination with in situ thin film deposition to obtain direct information on the interface structure between polycrystalline BiVO4 and NiO, CoOx and Sn-doped In2O3 (ITO). Strong upwards band bending was observed for the BiVO4/NiO and BiVO4/CoOx interfaces without observing chemical changes in BiVO4, while limited band bending and reduction of Bi and V was observed while forming the BiVO4/ITO interface. Thus, the tunability of the Fermi level position within BiVO4 seems to be limited to a certain range. The feasibility of high upwards band bending through junctions with high work function (WF) compounds demonstrate that nickel oxide and cobalt oxide are able to enhance the charge carrier separation in BiVO4. Similar studies could help to identify whether new photoelectrode materials and their heterostructures would be suitable for photoelectrochemical water splitting.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...