Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 83(2): 167-185.e9, 2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36577401

RESUMEN

The DNA double-strand break repair complex Mre11-Rad50-Nbs1 (MRN) detects and nucleolytically processes DNA ends, activates the ATM kinase, and tethers DNA at break sites. How MRN can act both as nuclease and scaffold protein is not well understood. The cryo-EM structure of MRN from Chaetomium thermophilum reveals a 2:2:1 complex with a single Nbs1 wrapping around the autoinhibited Mre11 nuclease dimer. MRN has two DNA-binding modes, one ATP-dependent mode for loading onto DNA ends and one ATP-independent mode through Mre11's C terminus, suggesting how it may interact with DSBs and intact DNA. MRNs two 60-nm-long coiled-coil domains form a linear rod structure, the apex of which is assembled by the two joined zinc-hook motifs. Apices from two MRN complexes can further dimerize, forming 120-nm spanning MRN-MRN structures. Our results illustrate the architecture of MRN and suggest how it mechanistically integrates catalytic and tethering functions.


Asunto(s)
Reparación del ADN , ADN , Microscopía por Crioelectrón , ADN/genética , Ácido Anhídrido Hidrolasas/genética , Roturas del ADN de Doble Cadena , Enzimas Reparadoras del ADN/metabolismo , Adenosina Trifosfato/metabolismo , Proteína Homóloga de MRE11/genética , Proteína Homóloga de MRE11/metabolismo , Proteínas de Ciclo Celular/metabolismo
2.
Mol Cell ; 82(18): 3513-3522.e6, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35987200

RESUMEN

DNA double-strand breaks (DSBs) threaten genome stability and are linked to tumorigenesis in humans. Repair of DSBs requires the removal of attached proteins and hairpins through a poorly understood but physiologically critical endonuclease activity by the Mre11-Rad50 complex. Here, we report cryoelectron microscopy (cryo-EM) structures of the bacterial Mre11-Rad50 homolog SbcCD bound to a protein-blocked DNA end and a DNA hairpin. The structures reveal that Mre11-Rad50 bends internal DNA for endonucleolytic cleavage and show how internal DNA, DNA ends, and hairpins are processed through a similar ATP-regulated conformational state. Furthermore, Mre11-Rad50 is loaded onto blocked DNA ends with Mre11 pointing away from the block, explaining the distinct biochemistries of 3' → 5' exonucleolytic and endonucleolytic incision through the way Mre11-Rad50 interacts with diverse DNA ends. In summary, our results unify Mre11-Rad50's enigmatic nuclease diversity within a single structural framework and reveal how blocked DNA ends and hairpins are processed.


Asunto(s)
Proteínas de Unión al ADN , ADN , Proteína Homóloga de MRE11/química , Ácido Anhídrido Hidrolasas/genética , Ácido Anhídrido Hidrolasas/metabolismo , Adenosina Trifosfato/metabolismo , Microscopía por Crioelectrón , ADN/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Endonucleasas/genética , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Humanos , Conformación de Ácido Nucleico
3.
Genes (Basel) ; 12(9)2021 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-34573326

RESUMEN

RNAs are key players in the cell, and to fulfil their functions, they are enzymatically modified. These modifications have been found to be dynamic and dependent on internal and external factors, such as stress. In this study we used nucleic acid isotope labeling coupled mass spectrometry (NAIL-MS) to address the question of which mechanisms allow the dynamic adaptation of RNA modifications during stress in the model organism S. cerevisiae. We found that both tRNA and rRNA transcription is stalled in yeast exposed to stressors such as H2O2, NaAsO2 or methyl methanesulfonate (MMS). From the absence of new transcripts, we concluded that most RNA modification profile changes observed to date are linked to changes happening on the pre-existing RNAs. We confirmed these changes, and we followed the fate of the pre-existing tRNAs and rRNAs during stress recovery. For MMS, we found previously described damage products in tRNA, and in addition, we found evidence for direct base methylation damage of 2'O-ribose methylated nucleosides in rRNA. While we found no evidence for increased RNA degradation after MMS exposure, we observed rapid loss of all methylation damages in all studied RNAs. With NAIL-MS we further established the modification speed in new tRNA and 18S and 25S rRNA from unstressed S. cerevisiae. During stress exposure, the placement of modifications was delayed overall. Only the tRNA modifications 1-methyladenosine and pseudouridine were incorporated as fast in stressed cells as in control cells. Similarly, 2'-O-methyladenosine in both 18S and 25S rRNA was unaffected by the stressor, but all other rRNA modifications were incorporated after a delay. In summary, we present mechanistic insights into stress-dependent RNA modification profiling in S. cerevisiae tRNA and rRNA.


Asunto(s)
Procesamiento Postranscripcional del ARN , ARN de Hongos/metabolismo , Saccharomyces cerevisiae/fisiología , Estrés Fisiológico/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Seudouridina/metabolismo , ARN Ribosómico/metabolismo , ARN Ribosómico 18S/metabolismo , ARN de Transferencia/metabolismo
4.
EMBO J ; 39(19): e103889, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32815200

RESUMEN

Plasticity of the proteome is critical to adapt to varying conditions. Control of mitochondrial protein import contributes to this plasticity. Here, we identified a pathway that regulates mitochondrial protein import by regulated N-terminal processing. We demonstrate that dipeptidyl peptidases 8/9 (DPP8/9) mediate the N-terminal processing of adenylate kinase 2 (AK2) en route to mitochondria. We show that AK2 is a substrate of the mitochondrial disulfide relay, thus lacking an N-terminal mitochondrial targeting sequence and undergoing comparatively slow import. DPP9-mediated processing of AK2 induces its rapid proteasomal degradation and prevents cytosolic accumulation of enzymatically active AK2. Besides AK2, we identify more than 100 mitochondrial proteins with putative DPP8/9 recognition sites and demonstrate that DPP8/9 influence the cellular levels of a number of these proteins. Collectively, we provide in this study a conceptual framework on how regulated cytosolic processing controls levels of mitochondrial proteins as well as their dual localization to mitochondria and other compartments.


Asunto(s)
Adenilato Quinasa/metabolismo , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Proteínas Mitocondriales/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Células HEK293 , Células HeLa , Humanos , Transporte de Proteínas
5.
Genes Dev ; 34(9-10): 715-729, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32217665

RESUMEN

Covalent chemical modifications of cellular RNAs directly impact all biological processes. However, our mechanistic understanding of the enzymes catalyzing these modifications, their substrates and biological functions, remains vague. Amongst RNA modifications N6-methyladenosine (m6A) is widespread and found in messenger (mRNA), ribosomal (rRNA), and noncoding RNAs. Here, we undertook a systematic screen to uncover new RNA methyltransferases. We demonstrate that the methyltransferase-like 5 (METTL5) protein catalyzes m6A in 18S rRNA at position A1832 We report that absence of Mettl5 in mouse embryonic stem cells (mESCs) results in a decrease in global translation rate, spontaneous loss of pluripotency, and compromised differentiation potential. METTL5-deficient mice are born at non-Mendelian rates and develop morphological and behavioral abnormalities. Importantly, mice lacking METTL5 recapitulate symptoms of patients with DNA variants in METTL5, thereby providing a new mouse disease model. Overall, our biochemical, molecular, and in vivo characterization highlights the importance of m6A in rRNA in stemness, differentiation, development, and diseases.


Asunto(s)
Diferenciación Celular/genética , Regulación del Desarrollo de la Expresión Génica/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Animales , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/enzimología , Mutación , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Biosíntesis de Proteínas/genética , ARN Ribosómico 18S/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...