Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Nat Microbiol ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637722

RESUMEN

Metabolic disease is epidemiologically linked to severe complications upon influenza virus infection, thus vaccination is a priority in this high-risk population. Yet, vaccine responses are less effective in these same hosts. Here we examined how the timing of diet switching from a high-fat diet to a control diet affected influenza vaccine efficacy in diet-induced obese mice. Our results demonstrate that the systemic meta-inflammation generated by high-fat diet exposure limited T cell maturation to the memory compartment at the time of vaccination, impacting the recall of effector memory T cells upon viral challenge. This was not improved with a diet switch post-vaccination. However, the metabolic dysfunction of T cells was reversed if weight loss occurred 4 weeks before vaccination, restoring a functional recall response. This corresponded with changes in the systemic obesity-related biomarkers leptin and adiponectin, highlighting the systemic and specific effects of diet on influenza vaccine immunogenicity.

2.
Nature ; 628(8009): 835-843, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38600381

RESUMEN

Severe influenza A virus (IAV) infections can result in hyper-inflammation, lung injury and acute respiratory distress syndrome1-5 (ARDS), for which there are no effective pharmacological therapies. Necroptosis is an attractive entry point for therapeutic intervention in ARDS and related inflammatory conditions because it drives pathogenic lung inflammation and lethality during severe IAV infection6-8 and can potentially be targeted by receptor interacting protein kinase 3 (RIPK3) inhibitors. Here we show that a newly developed RIPK3 inhibitor, UH15-38, potently and selectively blocked IAV-triggered necroptosis in alveolar epithelial cells in vivo. UH15-38 ameliorated lung inflammation and prevented mortality following infection with laboratory-adapted and pandemic strains of IAV, without compromising antiviral adaptive immune responses or impeding viral clearance. UH15-38 displayed robust therapeutic efficacy even when administered late in the course of infection, suggesting that RIPK3 blockade may provide clinical benefit in patients with IAV-driven ARDS and other hyper-inflammatory pathologies.


Asunto(s)
Lesión Pulmonar , Necroptosis , Infecciones por Orthomyxoviridae , Inhibidores de Proteínas Quinasas , Proteína Serina-Treonina Quinasas de Interacción con Receptores , Animales , Femenino , Humanos , Masculino , Ratones , Células Epiteliales Alveolares/patología , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/virología , Células Epiteliales Alveolares/metabolismo , Virus de la Influenza A/clasificación , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/inmunología , Virus de la Influenza A/patogenicidad , Lesión Pulmonar/complicaciones , Lesión Pulmonar/patología , Lesión Pulmonar/prevención & control , Lesión Pulmonar/virología , Ratones Endogámicos C57BL , Necroptosis/efectos de los fármacos , Infecciones por Orthomyxoviridae/complicaciones , Infecciones por Orthomyxoviridae/tratamiento farmacológico , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/mortalidad , Infecciones por Orthomyxoviridae/virología , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/antagonistas & inhibidores , Síndrome de Dificultad Respiratoria/complicaciones , Síndrome de Dificultad Respiratoria/patología , Síndrome de Dificultad Respiratoria/prevención & control , Síndrome de Dificultad Respiratoria/virología
3.
bioRxiv ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38585889

RESUMEN

The cellular plasticity of neuroblastoma is defined by a mixture of two major cell states, adrenergic (ADRN) and mesenchymal (MES), which may contribute to therapy resistance. However, how neuroblastoma cells switch cellular states during therapy remains largely unknown and how to eradicate neuroblastoma regardless of their cell states is a clinical challenge. To better understand the lineage switch of neuroblastoma in chemoresistance, we comprehensively defined the transcriptomic and epigenetic map of ADRN and MES types of neuroblastomas using human and murine models treated with indisulam, a selective RBM39 degrader. We showed that cancer cells not only undergo a bidirectional switch between ADRN and MES states, but also acquire additional cellular states, reminiscent of the developmental pliancy of neural crest cells. The lineage alterations are coupled with epigenetic reprogramming and dependency switch of lineage-specific transcription factors, epigenetic modifiers and targetable kinases. Through targeting RNA splicing, indisulam induces an inflammatory tumor microenvironment and enhances anticancer activity of natural killer cells. The combination of indisulam with anti-GD2 immunotherapy results in a durable, complete response in high-risk transgenic neuroblastoma models, providing an innovative, rational therapeutic approach to eradicate tumor cells regardless of their potential to switch cell states.

4.
Cell Rep Med ; 5(3): 101468, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38508144

RESUMEN

Neuroblastoma with MYCN amplification (MNA) is a high-risk disease that has a poor survival rate. Neuroblastoma displays cellular heterogeneity, including more differentiated (adrenergic) and more primitive (mesenchymal) cellular states. Here, we demonstrate that MYCN oncoprotein promotes a cellular state switch in mesenchymal cells to an adrenergic state, accompanied by induction of histone lysine demethylase 4 family members (KDM4A-C) that act in concert to control the expression of MYCN and adrenergic core regulatory circulatory (CRC) transcription factors. Pharmacologic inhibition of KDM4 blocks expression of MYCN and the adrenergic CRC transcriptome with genome-wide induction of transcriptionally repressive H3K9me3, resulting in potent anticancer activity against neuroblastomas with MNA by inducing neuroblastic differentiation and apoptosis. Furthermore, a short-term KDM4 inhibition in combination with conventional, cytotoxic chemotherapy results in complete tumor responses of xenografts with MNA. Thus, KDM4 blockade may serve as a transformative strategy to target the adrenergic CRC dependencies in MNA neuroblastomas.


Asunto(s)
Histona Demetilasas , Neuroblastoma , Humanos , Proteína Proto-Oncogénica N-Myc/genética , Línea Celular Tumoral , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/genética , Proteínas Oncogénicas/metabolismo , Histona Demetilasas con Dominio de Jumonji/genética
5.
Nat Immunol ; 24(9): 1511-1526, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37592015

RESUMEN

Evidence suggests that innate and adaptive cellular responses mediate resistance to the influenza virus and confer protection after vaccination. However, few studies have resolved the contribution of cellular responses within the context of preexisting antibody titers. Here, we measured the peripheral immune profiles of 206 vaccinated or unvaccinated adults to determine how baseline variations in the cellular and humoral immune compartments contribute independently or synergistically to the risk of developing symptomatic influenza. Protection correlated with diverse and polyfunctional CD4+ and CD8+ T, circulating T follicular helper, T helper type 17, myeloid dendritic and CD16+ natural killer (NK) cell subsets. Conversely, increased susceptibility was predominantly attributed to nonspecific inflammatory populations, including γδ T cells and activated CD16- NK cells, as well as TNFα+ single-cytokine-producing CD8+ T cells. Multivariate and predictive modeling indicated that cellular subsets (1) work synergistically with humoral immunity to confer protection, (2) improve model performance over demographic and serologic factors alone and (3) comprise the most important predictive covariates. Together, these results demonstrate that preinfection peripheral cell composition improves the prediction of symptomatic influenza susceptibility over vaccination, demographics or serology alone.


Asunto(s)
Enfermedades Transmisibles , Gripe Humana , Infecciones por Orthomyxoviridae , Orthomyxoviridae , Adulto , Humanos , Linfocitos T CD8-positivos
6.
Sci Adv ; 7(47): eabj5405, 2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34788094

RESUMEN

Aberrant alternative pre-mRNA splicing plays a critical role in MYC-driven cancers and therefore may represent a therapeutic vulnerability. Here, we show that neuroblastoma, a MYC-driven cancer characterized by splicing dysregulation and spliceosomal dependency, requires the splicing factor RBM39 for survival. Indisulam, a "molecular glue" that selectively recruits RBM39 to the CRL4-DCAF15 E3 ubiquitin ligase for proteasomal degradation, is highly efficacious against neuroblastoma, leading to significant responses in multiple high-risk disease models, without overt toxicity. Genetic depletion or indisulam-mediated degradation of RBM39 induces significant genome-wide splicing anomalies and cell death. Mechanistically, the dependency on RBM39 and high-level expression of DCAF15 determine the exquisite sensitivity of neuroblastoma to indisulam. Our data indicate that targeting the dysregulated spliceosome by precisely inhibiting RBM39, a vulnerability in neuroblastoma, is a valid therapeutic strategy.

7.
Cancer Res ; 81(19): 5047-5059, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34301764

RESUMEN

Immune cells regulate tumor growth by mirroring their function as tissue repair organizers in normal tissues. To understand the different facets of immune-tumor collaboration through genetics, spatial transcriptomics, and immunologic manipulation with noninvasive, longitudinal imaging, we generated a penetrant double oncogene-driven autochthonous model of neuroblastoma. Spatial transcriptomic analysis showed that CD4+ and myeloid populations colocalized within the tumor parenchyma, while CD8+ T cells and B cells were peripherally dispersed. Depletion of CD4+ T cells or CCR2+ macrophages, but not B cells, CD8+ T cells, or natural killer (NK) cells, prevented tumor formation. Tumor CD4+ T cells displayed unconventional phenotypes and were clonotypically diverse and antigen independent. Within the myeloid fraction, tumor growth required myeloid cells expressing arginase-1. Overall, these results demonstrate how arginine-metabolizing myeloid cells conspire with pathogenic CD4+ T cells to create permissive conditions for tumor formation, suggesting that these protumorigenic pathways could be disabled by targeting myeloid arginine metabolism. SIGNIFICANCE: A new model of human neuroblastoma provides ways to track tumor formation and expansion in living animals, allowing identification of CD4+ T-cell and macrophage functions required for oncogenesis.


Asunto(s)
Arginasa/genética , Linfocitos T CD4-Positivos/metabolismo , Susceptibilidad a Enfermedades , Células Mieloides/metabolismo , Neuroblastoma/etiología , Neuroblastoma/metabolismo , Animales , Arginasa/metabolismo , Biomarcadores , Células de la Médula Ósea/metabolismo , Linfocitos T CD4-Positivos/inmunología , Línea Celular Tumoral , Biología Computacional/métodos , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Humanos , Ratones , Ratones Transgénicos , Neuroblastoma/patología , Oncogenes , Análisis de la Célula Individual , Transcriptoma
8.
J Virol ; 93(2)2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30381485

RESUMEN

Obese individuals are considered a high-risk group for developing severe influenza virus infection. While the exact mechanisms for increased disease severity remain under investigation, obese-mouse models suggest that increased acute lung injury (ALI), potentially due to enhanced viral spread and decreased wound repair, is likely involved. We previously demonstrated that upregulation of the lung epithelial cell ß6 integrin during influenza virus infection was involved in disease severity. Knocking out ß6 (ß6 KO) resulted in improved survival. Of interest, obese mice have increased lung ß6 integrin levels at homeostasis. Thus, we hypothesized that the protective effect seen in ß6 KO mice would extend to the highly susceptible obese-mouse model. In the current study, we show that crossing ß6 KO mice with genetically obese (ob/ob) mice (OBKO) resulted in reduced ALI and impaired viral spread, like their lean counterparts. Mechanistically, OBKO alveolar macrophages and epithelial cells had increased type I interferon (IFN) signaling, potentially through upregulated type I IFN receptor expression, which was important for the enhanced protection during infection. Taken together, our results indicate that the absence of an epithelial integrin can beneficially alter the pulmonary microenvironment by increasing protective type I IFN responses even in a highly susceptible obese-mouse model. These studies increase our understanding of influenza virus pathogenesis in high-risk populations and may lead to the development of novel therapies.IMPORTANCE Obesity is a risk factor for developing severe influenza virus infection. However, the reasons for this are unknown. We found that the lungs of obese mice have increased expression of the epithelial integrin ß6, a host factor associated with increased disease severity. Knocking out integrin ß6 in obese mice favorably altered the pulmonary environment by increasing type I IFN signaling, resulting in decreased viral spread, reduced lung injury, and increased survival. This study furthers our understanding of influenza virus pathogenesis in the high-risk obese population and may potentially lead to the development of novel therapies for influenza virus infection.


Asunto(s)
Lesión Pulmonar Aguda/virología , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Cadenas beta de Integrinas/genética , Obesidad/complicaciones , Infecciones por Orthomyxoviridae/inmunología , Lesión Pulmonar Aguda/inmunología , Animales , Modelos Animales de Enfermedad , Perros , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Interferón Tipo I/metabolismo , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos C57BL , Obesidad/genética , Infecciones por Orthomyxoviridae/genética , Receptor de Interferón alfa y beta/metabolismo , Transducción de Señal , Índices de Gravedad del Trauma
9.
J Immunother Cancer ; 5(1): 101, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29254508

RESUMEN

BACKGROUND: Myeloid cells are an abundant leukocyte in many types of tumors and contribute to immune evasion. Expression of the enzyme arginase 1 (Arg1) is a defining feature of immunosuppressive myeloid cells and leads to depletion of L-arginine, a nutrient required for T cell and natural killer (NK) cell proliferation. Here we use CB-1158, a potent and orally-bioavailable small-molecule inhibitor of arginase, to investigate the role of Arg1 in regulating anti-tumor immunity. METHODS: CB-1158 was tested for the ability to block myeloid cell-mediated inhibition of T cell proliferation in vitro, and for tumor growth inhibition in syngeneic mouse models of cancer as a single agent and in combination with other therapies. Tumors from animals treated with CB-1158 were profiled for changes in immune cell subsets, expression of immune-related genes, and cytokines. Human tumor tissue microarrays were probed for Arg1 expression by immunohistochemistry and immunofluorescence. Cancer patient plasma samples were assessed for Arg1 protein and L-arginine by ELISA and mass spectrometry, respectively. RESULTS: CB-1158 blocked myeloid cell-mediated suppression of T cell proliferation in vitro and reduced tumor growth in multiple mouse models of cancer, as a single agent and in combination with checkpoint blockade, adoptive T cell therapy, adoptive NK cell therapy, and the chemotherapy agent gemcitabine. Profiling of the tumor microenvironment revealed that CB-1158 increased tumor-infiltrating CD8+ T cells and NK cells, inflammatory cytokines, and expression of interferon-inducible genes. Patient tumor samples from multiple histologies expressed an abundance of tumor-infiltrating Arg1+ myeloid cells. Plasma samples from cancer patients exhibited elevated Arg1 and reduced L-arginine compared to healthy volunteers. CONCLUSIONS: These results demonstrate that Arg1 is a key mediator of immune suppression and that inhibiting Arg1 with CB-1158 shifts the immune landscape toward a pro-inflammatory environment, blunting myeloid cell-mediated immune evasion and reducing tumor growth. Furthermore, our results suggest that arginase blockade by CB-1158 may be an effective therapy in multiple types of cancer and combining CB-1158 with standard-of-care chemotherapy or other immunotherapies may yield improved clinical responses.


Asunto(s)
Arginasa/metabolismo , Células Mieloides/citología , Neoplasias/tratamiento farmacológico , Pirrolidinas/administración & dosificación , Bibliotecas de Moléculas Pequeñas/administración & dosificación , Microambiente Tumoral/efectos de los fármacos , Animales , Arginasa/antagonistas & inhibidores , Arginina/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Células Hep G2 , Humanos , Células K562 , Masculino , Ratones , Células Mieloides/efectos de los fármacos , Células Mieloides/enzimología , Neoplasias/inmunología , Neoplasias/metabolismo , Pirrolidinas/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Linfocitos T/citología , Linfocitos T/efectos de los fármacos , Regulación hacia Arriba , Ensayos Antitumor por Modelo de Xenoinjerto
10.
mBio ; 8(5)2017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28928207

RESUMEN

Obesity is a risk factor for developing severe disease following influenza virus infection; however, the comorbidity of obesity and secondary bacterial infection, a serious complication of influenza virus infections, is unknown. To fill this gap in knowledge, lean and obese C57BL/6 mice were infected with a nonlethal dose of influenza virus followed by a nonlethal dose of Streptococcus pneumoniae Strikingly, not only did significantly enhanced death occur in obese coinfected mice compared to lean controls, but also high mortality was seen irrespective of influenza virus strain, bacterial strain, or timing of coinfection. This result was unexpected, given that most influenza virus strains, especially seasonal human A and B viruses, are nonlethal in this model. Both viral and bacterial titers were increased in the upper respiratory tract and lungs of obese animals as early as days 1 and 2 post-bacterial infection, leading to a significant decrease in lung function. This increased bacterial load correlated with extensive cellular damage and upregulation of platelet-activating factor receptor, a host receptor central to pneumococcal invasion. Importantly, while vaccination of obese mice against either influenza virus or pneumococcus failed to confer protection, antibiotic treatment was able to resolve secondary bacterial infection-associated mortality. Overall, secondary bacterial pneumonia could be a widespread, unaddressed public health problem in an increasingly obese population.IMPORTANCE Worldwide obesity rates have continued to increase. Obesity is associated with increased severity of influenza virus infection; however, very little is known about respiratory coinfections in this expanding, high-risk population. Our studies utilized a coinfection model to show that obesity increases mortality from secondary bacterial infection following influenza virus challenge through a "perfect storm" of host factors that lead to excessive viral and bacterial outgrowth. In addition, we found that vaccination of obese mice against either virus or bacteria failed to confer protection against coinfection, but antibiotic treatment did alleviate mortality. Combined, these results represent an understudied and imminent public health concern in a weighty portion of the global population.


Asunto(s)
Coinfección/etiología , Virus de la Influenza A/aislamiento & purificación , Vacunas contra la Influenza/administración & dosificación , Obesidad/complicaciones , Infecciones por Orthomyxoviridae/complicaciones , Vacunas Neumococicas/administración & dosificación , Animales , Coinfección/microbiología , Coinfección/virología , Comorbilidad , Virus de la Influenza A/crecimiento & desarrollo , Pulmón/microbiología , Pulmón/virología , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/microbiología , Obesidad/virología , Infecciones por Orthomyxoviridae/microbiología , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/virología , Infecciones Neumocócicas/microbiología , Infecciones Neumocócicas/prevención & control , Infecciones Neumocócicas/virología , Insuficiencia del Tratamiento , Vacunación
11.
J Biol Chem ; 292(1): 15-30, 2017 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-27903651

RESUMEN

Modulation of T cell proliferation and function by immunoregulatory myeloid cells are an essential means of preventing self-reactivity and restoring tissue homeostasis. Consumption of amino acids such as arginine and tryptophan by immunoregulatory macrophages is one pathway that suppresses local T cell proliferation. Using a reduced complexity in vitro macrophage-T cell co-culture system, we show that macrophage arginase-1 is the only factor required by M2 macrophages to block T cells in G1, and this effect is mediated by l-arginine elimination rather than metabolite generation. Tracking how T cells adjust their metabolism when deprived of arginine revealed the significance of macrophage-mediated arginine deprivation to T cells. We found mTORC1 activity was unaffected in the initial G1 block. After 2 days of arginine deprivation, mTORC1 activity declined paralleling a selective down-regulation of SREBP target gene expression, whereas mRNAs involved in glycolysis, gluconeogenesis, and T cell activation were unaffected. Cell cycle arrest was reversible at any point by exogenous arginine, suggesting starved T cells remain poised awaiting nutrients. Arginine deprivation-induced cell cycle arrest was mediated in part by Rictor/mTORC2, providing evidence that this nutrient recognition pathway is a central component of how T cells measure environmental arginine.


Asunto(s)
Arginina/metabolismo , Proteínas Portadoras/metabolismo , Puntos de Control del Ciclo Celular/inmunología , Proliferación Celular , Complejos Multiproteicos/metabolismo , Células Mieloides/inmunología , Linfocitos T/inmunología , Serina-Treonina Quinasas TOR/metabolismo , Animales , Células Cultivadas , Técnicas de Cocultivo , Tolerancia Inmunológica , Terapia de Inmunosupresión , Activación de Linfocitos , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Células Mieloides/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Asociada al mTOR Insensible a la Rapamicina , Linfocitos T/metabolismo
12.
Cell Rep ; 17(9): 2247-2258, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27880901

RESUMEN

GCN2 is one of four "stress kinases" that block translation by phosphorylating eIF2α. GCN2 is thought to bind uncharged tRNAs to "sense" amino acid availability. In mammals, myeloid cells expressing indoleamine dioxygenases locally deplete tryptophan, which is detected by GCN2 in T cells to cause proliferative arrest. GCN2-deficient T cells were reported to ectopically enter the cell cycle when tryptophan was limiting. Using GCN2-deficient strains crossed to T cell receptor (TCR) transgenic backgrounds, we found GCN2 is essential for induction of stress target genes such as CHOP. However, GCN2-deficient CD8+ T cells fail to proliferate in limiting tryptophan, arginine, leucine, lysine, or asparagine, the opposite of what previous studies concluded. In vitro and in vivo proliferation experiments show that GCN2-deficient CD8+ T cells have T cell-intrinsic proliferative and trafficking defects not observed in CD4+ T cells. Thus, GCN2 is required for normal cytotoxic T cell function.


Asunto(s)
Proteínas Serina-Treonina Quinasas/metabolismo , Estrés Fisiológico , Linfocitos T Citotóxicos/citología , Linfocitos T Citotóxicos/enzimología , Triptófano/farmacología , Animales , Linfocitos T CD4-Positivos , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Epítopos , Regulación de la Expresión Génica/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores CCR7/metabolismo , Transducción de Señal/efectos de los fármacos , Bazo/citología , Estrés Fisiológico/efectos de los fármacos , Linfocitos T Citotóxicos/efectos de los fármacos , Factor de Transcripción CHOP/metabolismo
13.
J Biol Chem ; 291(50): 25815-25822, 2016 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-27799302

RESUMEN

Antigen-stimulated T cells require elevated importation of essential and non-essential amino acids to generate large numbers of daughter cells necessary for effective immunity to pathogens. When amino acids are limiting, T cells arrest in the G1 phase of the cell cycle, suggesting that they have specific sensing mechanisms to ensure sufficient amino acids are available for multiple rounds of daughter generation. We found that activation of mTORC1, which is regulated by amino acid amounts, was uncoupled from limiting amino acids in the G1 phase of the cell cycle. Instead, we found that Rictor/mTORC2 has an essential role in T cell amino acid sensing. In the absence of Rictor, CD4+ T cells proliferate normally in limiting arginine or leucine. Our data suggest that Rictor/mTORC2 controls an amino acid-sensitive checkpoint that allows T cells to determine whether the microenvironment contains sufficient resources for daughter cell generation.


Asunto(s)
Proteínas Portadoras/inmunología , Microambiente Celular/inmunología , Fase G1/inmunología , Complejos Multiproteicos/inmunología , Transducción de Señal/inmunología , Linfocitos T Reguladores/inmunología , Serina-Treonina Quinasas TOR/inmunología , Aminoácidos/inmunología , Animales , Proteínas Portadoras/genética , Microambiente Celular/genética , Fase G1/genética , Diana Mecanicista del Complejo 2 de la Rapamicina , Ratones , Ratones Endogámicos BALB C , Complejos Multiproteicos/genética , Proteína Asociada al mTOR Insensible a la Rapamicina , Transducción de Señal/genética , Serina-Treonina Quinasas TOR/genética
14.
PLoS Pathog ; 12(8): e1005804, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27505057

RESUMEN

The healthy lung maintains a steady state of immune readiness to rapidly respond to injury from invaders. Integrins are important for setting the parameters of this resting state, particularly the epithelial-restricted αVß6 integrin, which is upregulated during injury. Once expressed, αVß6 moderates acute lung injury (ALI) through as yet undefined molecular mechanisms. We show that the upregulation of ß6 during influenza infection is involved in disease pathogenesis. ß6-deficient mice (ß6 KO) have increased survival during influenza infection likely due to the limited viral spread into the alveolar spaces leading to reduced ALI. Although the ß6 KO have morphologically normal lungs, they harbor constitutively activated lung CD11b+ alveolar macrophages (AM) and elevated type I IFN signaling activity, which we traced to the loss of ß6-activated transforming growth factor-ß (TGF-ß). Administration of exogenous TGF-ß to ß6 KO mice leads to reduced numbers of CD11b+ AMs, decreased type I IFN signaling activity and loss of the protective phenotype during influenza infection. Protection extended to other respiratory pathogens such as Sendai virus and bacterial pneumonia. Our studies demonstrate that the loss of one epithelial protein, αVß6 integrin, can alter the lung microenvironment during both homeostasis and respiratory infection leading to reduced lung injury and improved survival.


Asunto(s)
Antígenos de Neoplasias/inmunología , Integrinas/inmunología , Interferón Tipo I/biosíntesis , Interferón Tipo I/inmunología , Pulmón/inmunología , Infecciones del Sistema Respiratorio/inmunología , Traslado Adoptivo , Animales , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Femenino , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Immunoblotting , Pulmón/microbiología , Macrófagos Alveolares/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa
15.
Vaccine ; 34(27): 3141-3148, 2016 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-27129426

RESUMEN

BACKGROUND: Approaches to improve the immune response of immunocompromised patients to influenza vaccination are needed. METHODS: Children and young adults (3-21 years) with cancer or HIV infection were randomized to receive 2 doses of high-dose (HD) trivalent influenza vaccine (TIV) or of standard-dose (SD) TIV. Hemagglutination inhibition (HAI) antibody titers were measured against H1, H3, and B antigens after each dose and 9 months later. Seroconversion was defined as ≥4-fold rise in HAI titer comparing pre- and post-vaccine sera. Seroprotection was defined as a post-vaccine HAI titer ≥1:40. Reactogenicity events (RE) were solicited using a structured questionnaire 7 and 14 days after each dose of vaccine, and adverse events by medical record review for 21 days after each dose of vaccine. RESULTS: Eighty-five participants were enrolled in the study; 27 with leukemia, 17 with solid tumor (ST), and 41 with HIV. Recipients of HD TIV had significantly greater fold increase in HAI titers to B antigen in leukemia group and to H1 antigen in ST group compared to SD TIV recipients. This increase was not documented in HIV group. There were no differences in seroconversion or seroprotection between HD TIV and SD TIV in all groups. There was no difference in the percentage of solicited RE in recipients of HD TIV (54% after dose 1 and 38% after dose 2) compared to SD TIV (40% after dose 1 and 20% after dose 2, p=0.27 and 0.09 after dose 1 and 2, respectively). CONCLUSION: HD TIV was more immunogenic than SD TIV in children and young adults with leukemia or ST, but not with HIV. HD TIV was safe and well-tolerated in children and young adults with leukemia, ST, or HIV.


Asunto(s)
Infecciones por VIH/inmunología , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/uso terapéutico , Gripe Humana/prevención & control , Neoplasias/inmunología , Adolescente , Anticuerpos Antivirales/sangre , Niño , Preescolar , Femenino , Pruebas de Inhibición de Hemaglutinación , Humanos , Inmunización Secundaria , Leucemia/inmunología , Masculino , Adulto Joven
17.
Cell Rep ; 12(11): 1902-14, 2015 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-26365184

RESUMEN

Cancer can involve non-resolving, persistent inflammation where varying numbers of tumor-associated macrophages (TAMs) infiltrate and adopt different activation states between anti-tumor M1 and pro-tumor M2 phenotypes. Here, we resolve a cascade causing differential macrophage phenotypes in the tumor microenvironment. Reduction in TNF mRNA production or loss of type I TNF receptor signaling resulted in a striking pattern of enhanced M2 mRNA expression. M2 gene expression was driven in part by IL-13 from eosinophils co-recruited with inflammatory monocytes, a pathway that was suppressed by TNF. Our data define regulatory nodes within the tumor microenvironment that balance M1 and M2 populations. Our results show macrophage polarization in cancer is dynamic and dependent on the balance between TNF and IL-13, thus providing a strategy for manipulating TAMs.


Asunto(s)
Macrófagos/metabolismo , Neoplasias/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Línea Celular Tumoral , Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Desnudos , Neoplasias/patología , Transducción de Señal , Microambiente Tumoral
18.
Cancer Res ; 75(15): 3054-64, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26183929

RESUMEN

Tristetraprolin (TTP) is an inducible zinc finger AU-rich RNA-binding protein essential for enforcing degradation of mRNAs encoding inflammatory chemokines and cytokines. Most studies on TTP center on the connection between mRNA half-life and inflammatory output, because loss of TTP amplifies inflammation by increasing the stability of AU-rich mRNAs. Here, we focused on how TTP controls cytokine and chemokine production in the nonresolving inflammation of cancer using tissue-specific approaches. In contrast with model in vitro macrophage systems, we found constitutive TTP expression in late-stage tumor-associated macrophages (TAM). However, TTP's effects on AU-rich mRNA stability were negligible and limited by constitutive p38α MAPK activity, which was the main driver of proinflammatory cytokine production in TAMs at the posttranscriptional level. Instead, elimination of TTP caused excessive protein production of inflammatory mediators, suggesting TTP-dependent translational suppression of AU-rich mRNAs. Manipulation of the p38α-TTP axis in macrophages has significant effects on the growth of tumors and therefore represents a means to manipulate inflammation in the tumor microenvironment.


Asunto(s)
Citocinas/metabolismo , Inflamación/metabolismo , Macrófagos/metabolismo , Estabilidad del ARN , Tristetraprolina/metabolismo , Animales , Inflamación/patología , Mediadores de Inflamación/metabolismo , Macrófagos/patología , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Neoplasias Experimentales/metabolismo , Neoplasias Experimentales/patología , Procesamiento Postranscripcional del ARN , Tristetraprolina/genética
19.
Vaccine ; 30(5): 879-85, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22155630

RESUMEN

BACKGROUND: Influenza vaccination is recommended for immunocompromised patients. METHODS: Children (6 months to 21 years) with cancer, HIV infection, or sickle cell disease (SCD) received 1 or 2 doses of pandemic 2009 H1N1 monovalent influenza vaccine (H1N1 MIV). Safety and tolerability, hemagglutination inhibition (HI) and microneutralization (MN) antibody titers were measured against 2009 H1N1 influenza A virus after each dose. Seroprotection (SP) and seroconversion (SC) rates were determined. RESULTS: 103 participants were enrolled and 99 were evaluable (39 with HIV, 37 with cancer and 23 with SCD). Mean age (±SD) was 7.9 (±5.4) years for cancer participants, 18.0 (±3.5) for HIV, and 13.3 (±4.2) for SCD. 54% were males; 65% black; and 96% had received seasonal influenza vaccine. HIV-infected participants had a median CD4 count of 625 cells/mm(3) (range, 140-1260). 46% had an undetectable HIV viral load and 41% were perinatally infected. No participant had vaccine-related serious adverse events. None developed influenza A proven illness during the 6 months after the vaccine. Local injection reactions were reported in 29% and systemic reactions in 42% after the first dose of vaccine. SC and SP were achieved after the last dose in 48% and 52%, respectively, of participants with leukemia or lymphoma, 50% and 75% of participants with solid tumors, 63% and 92% of HIV-infected participants, and 74% and 100% of participants with SCD. CONCLUSION: H1N1 MIV was safe and well tolerated. H1N1 MIV resulted in an adequate immune response in children with SCD. It was only modestly immunogenic in cancer or HIV participants.


Asunto(s)
Huésped Inmunocomprometido , Subtipo H1N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/efectos adversos , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Vacunación/métodos , Adolescente , Anemia de Células Falciformes/inmunología , Anticuerpos Antivirales/sangre , Niño , Preescolar , Femenino , Infecciones por VIH/inmunología , Pruebas de Inhibición de Hemaglutinación , Humanos , Lactante , Vacunas contra la Influenza/administración & dosificación , Masculino , Neoplasias/inmunología , Pruebas de Neutralización , Estudios Prospectivos , Adulto Joven
20.
J Infect Dis ; 204(10): 1475-82, 2011 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-21949042

RESUMEN

BACKGROUND: The safety and immunogenicity of live, attenuated influenza vaccine (LAIV) has not been compared to that of the standard trivalent inactivated vaccine (TIV) in children with cancer. METHODS: Randomized study of LAIV versus TIV in children with cancer, age 2-21 years, vaccinated according to recommendations based on age and prior vaccination. Data on reactogenicity and other adverse events and blood and nasal swab samples were obtained following vaccination. RESULTS: Fifty-five eligible subjects (mean age, 10.4 years) received vaccine (28 LAIV/27 TIV). Both vaccines were well tolerated. Rhinorrhea reported within 10 days of vaccination was similar in both groups (36% LAIV vs 33% TIV, P > .999). Ten LAIV recipients shed virus; the latest viral shedding was detected 7 days after vaccination. Immunogenicity data were available for 52 subjects, or 26 in each group. TIV induced significantly higher postvaccination geometric mean titers against influenza A viruses (P < .001), greater seroprotection against influenza A/H1N1 (P = .01), and greater seroconversion against A/H3N2 (P = .004), compared with LAIV. No differences after vaccination were observed against influenza B viruses. CONCLUSIONS: As expected, serum antibody response against influenza A strains were greater with TIV than with LAIV in children with cancer. Both vaccines were well tolerated, and prolonged viral shedding after LAIV was not detected. CLINICAL TRIALS REGISTRATION: NCT00906750.


Asunto(s)
Anticuerpos Antivirales/sangre , Huésped Inmunocomprometido , Virus de la Influenza A/inmunología , Virus de la Influenza B/inmunología , Vacunas contra la Influenza/efectos adversos , Vacunas contra la Influenza/inmunología , Neoplasias/inmunología , Adolescente , Niño , Preescolar , Femenino , Pruebas de Inhibición de Hemaglutinación , Humanos , Gripe Humana/prevención & control , Masculino , Vacunas Atenuadas/efectos adversos , Vacunas Atenuadas/inmunología , Vacunas de Productos Inactivados/efectos adversos , Vacunas de Productos Inactivados/inmunología , Esparcimiento de Virus , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...