Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 14: 1283677, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38026967

RESUMEN

Agents that stimulate the endoplasmic reticulum (ER) stress pathway are being exploited pharmacologically to induce cancer cell death. Cytotoxic ER stress is typically regulated by the transcription factor, C/EBP homologous protein 10 (CHOP10). Products of CHOP10 transcription include the pro-apoptotic proteins: ER oxidoreductase 1α (ERO1α), death receptor-5 (DR5), and tribbles-related protein 3 (TRB3). Our previous findings showed cell death induced by 15-deoxy- Δ12,14 prostamide J2 (15d-PMJ2) occurred in an ER stress-dependent manner. However, the pathway by which 15d-PMJ2 regulates ER stress-mediated death downstream of CHOP10 has not been identified. Our results demonstrate 5 µM 15d-PMJ2 increased CHOP10 expression and apoptosis in HCT116 colon cancer cells. In cells treated with pharmacological inhibitors of ER stress, 15d-PMJ2-induced apoptosis was reliant upon the ER stress pathway. To investigate the role of CHOP10 and its transcriptional products in apoptosis, genetic deletion of CHOP10 (CHOP10-KO) was performed using the CRISPR/Cas9 system. The apoptotic action of 15d-PMJ2 was blunted in cells lacking CHOP10 expression. The deletion of CHOP10 reduced the expression of DR5, ERO1α, and TRB3 although only the expression of TRB3 was significantly reduced. Therefore, we overexpressed TRB3 in CHOP10-KO cells and observed that the activation of Akt was inhibited and 15d-PMJ2-induced apoptosis was restored. Thus, a mechanism of apoptosis elicited by 15d-PMJ2 includes the stimulation of CHOP10/TRB3/Akt inhibition. Given the important role these signaling molecules play in cancer cell fate, 15d-PMJ2 may be an effective inducer of apoptosis in cancer cells.

2.
Oncotarget ; 13: 1380-1396, 2022 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-36580536

RESUMEN

Melanoma is the deadliest form of skin cancer in the US. Although immunotherapeutic checkpoint inhibitors and small-molecule kinase inhibitors have dramatically increased the survival of patients with melanoma, new or optimized therapeutic approaches are still needed to improve outcomes. 15-deoxy-Δ12,14-prostamide J2 (15d-PMJ2) is an investigational small-molecule that induces ER stress-mediated apoptosis selectively in tumor cells. Additionally, 15d-PMJ2 reduces melanoma growth in vivo. To assess the chemotherapeutic potential of 15d-PMJ2, the current study sought to uncover molecular pathways by which 15d-PMJ2 exerts its antitumor activity. B16F10 melanoma and JWF2 squamous cell carcinoma cell lines were cultured in the presence of pharmacological agents that prevent ER or oxidative stress as well as Ca2+ channel blockers to identify mechanisms of 15d-PMJ2 cell death. Our data demonstrated the ER stress protein, PERK, was required for 15d-PMJ2-induced death. PERK activation triggered the release of ER-resident Ca2+ through an IP3R sensitive pathway. Increased calcium mobilization led to mitochondrial Ca2+ overload followed by mitochondrial permeability transition pore (mPTP) opening and the deterioration of mitochondrial respiration. Finally, we show the electrophilic double bond located within the cyclopentenone ring of 15d-PMJ2 was required for its activity. The present study identifies PERK/IP3R/mPTP signaling as a mechanism of 15d-PMJ2 antitumor activity.


Asunto(s)
Melanoma , Poro de Transición de la Permeabilidad Mitocondrial , Humanos , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Señalización del Calcio , Muerte Celular , Apoptosis , Calcio/metabolismo , Prostaglandina D2/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA