Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 102(10): 5995-6004, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21392979

RESUMEN

Three corn feedstocks (fibers, cobs and stover) available for sustainable second generation bioethanol production were subjected to pretreatments with the aim of preventing formation of yeast-inhibiting sugar-degradation products. After pretreatment, monosaccharides, soluble oligosaccharides and residual sugars were quantified. The size of the soluble xylans was estimated by size exclusion chromatography. The pretreatments resulted in relatively low monosaccharide release, but conditions were reached to obtain most of the xylan-structures in the soluble part. A state of the art commercial enzyme preparation, Cellic CTec2, was tested in hydrolyzing these dilute acid-pretreated feedstocks. The xylose and glucose liberated were fermented by a recombinant Saccharomyces cerevisiae strain. In the simultaneous enzymatic saccharification and fermentation system employed, a concentration of more than 5% (v/v) (0.2g per g of dry matter) of ethanol was reached.


Asunto(s)
Ácidos/química , Metabolismo de los Hidratos de Carbono , Enzimas/metabolismo , Fermentación , Zea mays
2.
J Agric Food Chem ; 58(21): 11294-301, 2010 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-20942461

RESUMEN

Corn fiber, a byproduct from the corn industry, would be a good source for bioethanol production if the hemicellulose, consisting of polymeric glucoronoarabinoxylans, can be degraded into fermentable sugars. Structural knowledge of the hemicellulose is needed to improve the enzymatic hydrolyses of corn fiber. Oligosaccharides that resisted a mild acid pretreatment and subsequent enzymatic hydrolysis, representing 50% of the starting material, were fractionated on reversed phase and size exclusion material and characterized. The oligosaccharides within each fraction were highly substituted by various compounds. Oligosaccharides containing uronic acid were accumulated in two polar fractions unless also a feruloyl group was present. Feruloylated oligosaccharides, containing mono- and/or diferulic acid, were accumulated within four more apolar fractions. All fractions contained high amounts of acetyl substituents. The data show that complex xylan oligomers are present in which ferulic acid, diferulates, acetic acid, galactose, arabinose, and uronic acids were combined within an oligomer. Hypothetical structures are discussed, demonstrating which enzyme activities are lacking to fully degrade corn glucuronoarabinoxylans.


Asunto(s)
Oligosacáridos/química , Extractos Vegetales/química , Xilanos/química , Zea mays/química , Ácidos/química , Biocombustibles/análisis , Biotecnología , Etanol/química , Fermentación , Hidrólisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA