Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 920: 170996, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38369136

RESUMEN

Mine reclamation historically focuses on enhancing plant coverage to improve below and aboveground ecology. However, there is a great need to study the role of soil microorganisms in mine reclamation, particularly long-term studies that track the succession of microbial communities. Here, we investigate the trajectory of microbial communities of mining sites reclaimed between three and 26 years. We used high-throughput amplicon sequencing to characterize the bacterial and fungal communities. We quantified how similar the reclaimed sites were to unmined, undisturbed reference sites and explored the trajectory of microbial communities along the reclamation chronosequence. We also examined the ecological processes that shape the assembly of bacterial communities. Finally, we investigated the functional potential of the microbial communities through metagenomic sequencing. Our results reveal that the reclamation age significantly impacted the community compositions of bacterial and fungal communities. As the reclamation age increases, bacterial and fungal communities become similar to the unmined, undisturbed reference site, suggesting a favorable succession in microbial communities. The bacterial community assembly was also significantly impacted by reclamation age and was primarily driven by stochastic processes, indicating a lesser influence of environmental properties on the bacterial community. Furthermore, our read-based metagenomic analysis showed that the microbial communities' functional potential increasingly became similar to the reference sites. Additionally, we found that the plant richness increased with the reclamation age. Overall, our study shows that both above- and belowground ecological properties of reclaimed mine sites trend towards undisturbed sites with increasing reclamation age. Further, it demonstrates the importance of microbial genomics in tracking the trajectory of ecosystem reclamation.


Asunto(s)
Microbiota , Micobioma , Microbiología del Suelo , Minería , Plantas , Suelo , Bacterias/genética
3.
ACS Omega ; 8(42): 39437-39446, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37901528

RESUMEN

Perfluoroalkyl and polyfluoroalkyl substances (PFAS) make up a group of anthropogenic chemicals with a myriad of applications. However, some PFAS have been shown to negatively impact human health and the environment, leading to increased regulation, with some countries making efforts to phase out their use. PFAS fate in the environment is driven by physical, chemical, and biological processes, with microbial communities in matrices such as soil and sewage sludge being known to generate a range of low-molecular-weight PFAS metabolites. Proposed metabolic intermediates for both mixed and pure microbial cultures include fluorinated carboxylates that may be activated by CoA prior to ß-oxidation and defluorination, although thus far, no PFAS-CoA adducts have been reported. Herein, we expressed and purified acyl-CoA synthetase (ACS) from the soil bacterium Gordonia sp. strain NB4-1Y and performed an analysis of substrate scope and enzyme kinetics using fluorinated and nonfluorinated carboxylates. We determined that ACS was able to catalyze the formation of CoA adducts of 3,3,3-trifluoropropionic acid, 5,5,5-trifluoropentanoic acid, 4,5,5-trifluoropent-4-enoic acid, and 4,4,5,5,5-pentafluoropentanoic acid. Kinetic analysis revealed a 90-98% decrease in kcat between nonfluorinated carboxylates and their fluorinated analogues. This provides evidence to validate proposed enzymatic pathways for microbial PFAS metabolism that proceed via an activation step involving the formation of CoA adducts.

4.
Environ Sci Technol ; 57(19): 7442-7453, 2023 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-37144860

RESUMEN

Some contemporary aqueous film-forming foams (AFFFs) contain n:3 and n:1:2 fluorotelomer betaines (FTBs), which are often detected at sites impacted by AFFFs. As new chemical replacements, little is known about their environmental fate. For the first time, we investigated the biotransformation potential of 5:3 and 5:1:2 FTBs and a commercial AFFF that mainly contains n:3 and n:1:2 FTBs (n = 5, 7, 9, 11, and 13). Although some polyfluoroalkyl compounds are precursors to perfluoroalkyl acids, 5:3 and 5:1:2 FTBs exhibited high persistence, with no significant changes even after 120 days of incubation. While the degradation of 5:3 FTB into suspected products such as fluorotelomer acids or perfluoroalkyl carboxylic acids (PFCAs) could not be conclusively confirmed, we did identify a potential biotransformation product, 5:3 fluorotelomer methylamine. Similarly, 5:1:2 FTB did not break down or produce short-chain hydrogen-substituted polyfluoroalkyl acids (n:2 H-FTCA), hydrogen-substituted PFCA (2H-PFCA), or any other products. Incubating the AFFF in four soils with differing properties and microbial communities resulted in 0.023-0.25 mol % PFCAs by day 120. Most of the products are believed to be derived from n:2 fluorotelomers, minor components of the AFFF. Therefore, the findings of the study cannot be fully explained by the current understanding of structure-biodegradability relationships.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Betaína , Suelo , Contaminantes Químicos del Agua/análisis , Fluorocarburos/análisis , Agua , Ácidos Carboxílicos/metabolismo
5.
Environ Health Perspect ; 131(1): 17010, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36719212

RESUMEN

BACKGROUND: The gut microbiome plays an essential role in human health. Despite the link between air pollution exposure and various diseases, its association with the gut microbiome during susceptible life periods remains scarce. OBJECTIVES: In this study, we examined the association between black carbon particles quantified in prenatal and postnatal biological matrices and bacterial richness and diversity measures, and bacterial families. METHODS: A total of 85 stool samples were collected from 4- to 6-y-old children enrolled in the ENVIRonmental influence ON early AGEing birth cohort. We performed 16S rRNA gene sequencing to calculate bacterial richness and diversity indices (Chao1 richness, Shannon diversity, and Simpson diversity) and the relative abundance of bacterial families. Black carbon particles were quantified via white light generation under femtosecond pulsed laser illumination in placental tissue and cord blood, employed as prenatal exposure biomarkers, and in urine, used as a post-natal exposure biomarker. We used robust multivariable-adjusted linear models to examine the associations between quantified black carbon loads and measures of richness (Chao1 index) and diversity (Shannon and Simpson indices), adjusting for parity, season of delivery, sequencing batch, age, sex, weight and height of the child, and maternal education. Additionally, we performed a differential relative abundance analysis of bacterial families with a correction for sampling fraction bias. Results are expressed as percentage difference for a doubling in black carbon loads with 95% confidence interval (CI). RESULTS: Two diversity indices were negatively associated with placental black carbon [Shannon: -4.38% (95% CI: -8.31%, -0.28%); Simpson: -0.90% (95% CI: -1.76%, -0.04%)], cord blood black carbon [Shannon: -3.38% (95% CI: -5.66%, -0.84%); Simpson: -0.91 (95% CI: -1.66%, -0.16%)], and urinary black carbon [Shannon: -3.39% (95% CI: -5.77%, -0.94%); Simpson: -0.89% (95% CI: -1.37%, -0.40%)]. The explained variance of black carbon on the above indices varied from 6.1% to 16.6%. No statistically significant associations were found between black carbon load and the Chao1 richness index. After multiple testing correction, placental black carbon was negatively associated with relative abundance of the bacterial families Defluviitaleaceae and Marinifilaceae, and urinary black carbon with Christensenellaceae and Coriobacteriaceae; associations with cord blood black carbon were not statistically significant after correction. CONCLUSION: Black carbon particles quantified in prenatal and postnatal biological matrices were associated with the composition and diversity of the childhood intestinal microbiome. These findings address the influential role of exposure to air pollution during pregnancy and early life in human health. https://doi.org/10.1289/EHP11257.


Asunto(s)
Microbioma Gastrointestinal , Placenta , Humanos , Niño , Embarazo , Femenino , Preescolar , Cohorte de Nacimiento , Sangre Fetal , ARN Ribosómico 16S , Bacterias , Carbono
6.
Microorganisms ; 9(10)2021 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-34683409

RESUMEN

Ambient air pollution exerts deleterious effects on our environment. Continuously exposed to the atmosphere, diverse communities of microorganisms thrive on leaf surfaces, the phylloplane. The composition of these communities is dynamic, responding to many environmental factors including ambient air pollution. In this field study, over a 2 year period, we sampled Hedera helix (ivy) leaves at six locations exposed to different ambient air pollution conditions. Daily, we monitored ambient black carbon (BC), PM2.5, PM10, nitrogen dioxide, and ozone concentrations and found that ambient air pollution led to a 2-7-fold BC increase on leaves, the phylloplane BC load. Our results further indicated that the phylloplane BC load correlates with the diversity of bacterial and fungal leaf communities, impacting diversity more than seasonal effects. The bacterial genera Novosphingobium, Hymenobacter, and Methylorubrum, and the fungal genus Ampelomyces were indicators for communities exposed to the highest phylloplane BC load. Parallel to this, we present one fungal and two bacterial phylloplane strains isolated from an air-polluted environment able to degrade benzene, toluene, and/or xylene, including a genomics-based description of the degradation pathways involved. The findings of this study suggest that ambient air pollution shapes microbial leaf communities, by affecting diversity and supporting members able to degrade airborne pollutants.

7.
Front Microbiol ; 12: 652031, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33995309

RESUMEN

The use of rustic cattle is desirable to face challenges brought on by climate change. Maremmana (MA) and Aubrac (AU) are rustic cattle breeds that can be successfully used for sustainable production. In this study, correlations between two rearing systems (feedlot and grazing) and the rumen microbiota, the lipid composition of rumen liquor (RL), and the growth performance of MA and AU steers were investigated. Bacterial community composition was characterized by high-throughput sequencing of 16S rRNA gene amplicons, and the RL lipid composition was determined by measuring fatty acid (FA) and the dimethyl acetal profiles. The main factor influencing bacterial community composition was the cattle breed. Some bacterial groups were positively correlated to average daily weight gain for the two breeds (i.e., Rikenellaceae RC9 gut group, Fibrobacter and Succiniclasticum in the rumen of MA steers, and Succinivibrionaceae UCG-002 in the rumen of AU steers); despite this, animal performance appeared to be influenced by short chain FAs production pathways and by the presence of H2 sinks that divert the H2 to processes alternative to the methanogenesis.

8.
Can J Microbiol ; 67(8): 572-583, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33656947

RESUMEN

Host-associated microbial communities play important roles in wildlife health, but these dynamics can be influenced by environmental factors. Urbanization has numerous effects on wildlife; however, the degree to which wildlife-associated bacterial communities and potential bacterial pathogens vary across urban-rural/native habitat gradients remains largely unknown. We used 16S rRNA gene amplicon sequencing to examine bacterial communities found on Mountain Chickadee (Poecile gambeli) feathers and nests in urban and rural habitats. The feathers and nests in urban and rural sites had similar abundances of major bacterial phyla and dominant genera with pathogenic members. However, richness of bacterial communities and potential pathogens on birds were higher in urban habitats, and potential pathogens accounted for some of the differences in bacterial occurrence between urban and rural environments. We predicted habitat using potential pathogen occurrence with a 90% success rate for feather bacteria, and a 72.2% success rate for nest bacteria, suggesting an influence of urban environments on the presence of potential pathogens. We additionally observed similarities in bacterial communities between nests and their occupants, suggesting bacterial transmission between them. These findings improve our understanding of the bacterial communities associated with urban wildlife and suggest that urbanization impacts the composition of wildlife-associated bacterial communities.


Asunto(s)
Bacterias , Microbiota , Animales , Bacterias/genética , Aves , ARN Ribosómico 16S/genética , Urbanización
9.
Environ Pollut ; 274: 116536, 2021 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-33529903

RESUMEN

The high global consumption of ibuprofen and its limited elimination by wastewater treatment plants (WWTPs), has led to the contamination of aquatic systems by this common analgesic and its metabolites. The potentially negative environmental and public health effects of this emerging contaminant have raised concerns, driving the demand for treatment technologies. The implementation of bacteria which mineralize organic contaminants in biopurification systems used to decontaminate water or directly in processes in WWTPs, is a cheap and sustainable means for complete elimination before release into the environment. In this work, an ibuprofen-mineralizing bacterial strain isolated from sediments of the River Elbe was characterized and assayed to remediate different ibuprofen-polluted media. Strain RW412, which was identified as Sphingopyxis granuli, has a 4.48 Mb genome which includes plasmid sequences which harbor the ipf genes that encode the first steps of ibuprofen mineralization. Here, we confirm that these genes encode enzymes which initiate CoA ligation to ibuprofen, followed by aromatic ring activation by a dioxygenase and retroaldol cleavage to unequivocally produce 4-isobutylcatechol and propionyl-CoA which then undergo further degradation. In liquid mineral salts medium, the strain eliminated more than 2 mM ibuprofen within 74 h with a generation time of 16 h. Upon inoculation into biopurification systems, it eliminated repeated doses of ibuprofen within a few days. Furthermore, in these systems the presence of RW412 avoided the accumulation of ibuprofen metabolites. In ibuprofen-spiked effluent from a municipal WWTP, ibuprofen removal by this strain was 7 times faster than by the indigenous microbiota. These results suggest that this strain can persist and remain active under environmentally relevant conditions, and may be a useful innovation to eliminate this emerging contaminant from urban wastewater treatment systems.


Asunto(s)
Sphingomonadaceae , Contaminantes Químicos del Agua , Purificación del Agua , Descontaminación , Ibuprofeno , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua/análisis
10.
Aquat Toxicol ; 230: 105672, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33227667

RESUMEN

Silver nanoparticles (AgNPs) are widely incorporated in household, consumer and medical products. Their unintentional release via wastewaters raises concerns on their environmental impact, particularly for aquatic organisms and their associated bacterial communities. It is known that the microbiome plays an important role in its host's health and physiology, e.g. by producing essential nutrients and providing protection against pathogens. A thorough understanding of the effects of AgNPs on bacterial communities and on their interactions with the host is crucial to fully assess AgNP toxicity on aquatic organisms. Our results indicate that the microbiome of the invertebrate Schmidtea mediterranea, a freshwater planarian, is affected by AgNP exposure at the tested 10 µg/ml concentration. Using targeted amplification of the bacterial 16S rRNA gene V3-V4 region, two independent experiments on the microbiomes of adult worms revealed a consistent decrease in Betaproteobacteriales after AgNP exposure, mainly attributed to a decrease in Curvibacter and Undibacterium. Although developing tissues and organisms are known to be more sensitive to toxic compounds, three independent experiments in regenerating worms showed a less pronounced effect of AgNP exposure on the microbiome, possibly because underlying bacterial community changes during development mask the AgNP induced effect. The presence of a polyvinyl-pyrrolidone (PVP) coating did not significantly alter the outcome of the experiments compared to those with uncoated particles. The observed variation between the different experiments underlines the highly variable nature of microbiomes and emphasises the need to repeat microbiome experiments, within and between physiological states of the animal.


Asunto(s)
Organismos Acuáticos/efectos de los fármacos , Betaproteobacteria/efectos de los fármacos , Nanopartículas del Metal/toxicidad , Microbiota/efectos de los fármacos , Planarias/efectos de los fármacos , Plata/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Organismos Acuáticos/crecimiento & desarrollo , Organismos Acuáticos/microbiología , Betaproteobacteria/genética , Betaproteobacteria/crecimiento & desarrollo , Nanopartículas del Metal/química , Microbiota/genética , Planarias/crecimiento & desarrollo , Planarias/microbiología , Povidona/química , ARN Ribosómico 16S/genética , Plata/química , Contaminantes Químicos del Agua/química
11.
Biodegradation ; 31(4-6): 407-422, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33150552

RESUMEN

Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are environmental contaminants of concern. We previously described biodegradation of two PFAS that represent components and transformation products of aqueous film-forming foams (AFFF), 6:2 fluorotelomer sulfonamidoalkyl betaine (6:2 FTAB) and 6:2 fluorotelomer sulfonate (6:2 FTSA), by Gordonia sp. strain NB4-1Y. To identify genes involved in the breakdown of these compounds, the transcriptomic response of NB4-1Y was examined when grown on 6:2 FTAB, 6:2 FTSA, a non-fluorinated analog of 6:2 FTSA (1-octanesulfonate), or MgSO4, as sole sulfur source. Differentially expressed genes were identified as those with ± 1.5 log2-fold-differences (± 1.5 log2FD) in transcript abundances in pairwise comparisons. Transcriptomes of cells grown on 6:2 FTAB and 6:2 FTSA were most similar (7.9% of genes expressed ± 1.5 log2FD); however, several genes that were expressed in greater abundance in 6:2 FTAB treated cells compared to 6:2 FTSA treated cells were noted for their potential role in carbon-nitrogen bond cleavage in 6:2 FTAB. Responses to sulfur limitation were observed in 6:2 FTAB, 6:2 FTSA, and 1-octanesulfonate treatments, as 20 genes relating to global sulfate stress response were more highly expressed under these conditions compared to the MgSO4 treatment. More highly expressed oxygenase genes in 6:2 FTAB, 6:2 FTSA, and 1-octanesulfonate treatments were found to code for proteins with lower percent sulfur-containing amino acids compared to both the total proteome and to oxygenases showing decreased expression. This work identifies genetic targets for further characterization and will inform studies aimed at evaluating the biodegradation potential of environmental samples through applied genomics.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Betaína , Biodegradación Ambiental , Fluorocarburos/análisis , Azufre , Transcriptoma/genética , Contaminantes Químicos del Agua/análisis
12.
Front Microbiol ; 11: 598507, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33519737

RESUMEN

The large-scale use of the herbicide glyphosate leads to growing ecotoxicological and human health concerns. Microbe-assisted phytoremediation arises as a good option to remove, contain, or degrade glyphosate from soils and waterbodies, and thus avoid further spreading to non-target areas. To achieve this, availability of plant-colonizing, glyphosate-tolerant and -degrading strains is required and at the same time, it must be linked to plant-microorganism interaction studies focusing on a substantive ability to colonize the roots and degrade or transform the herbicide. In this work, we isolated bacteria from a chronically glyphosate-exposed site in Argentina, evaluated their glyphosate tolerance using the minimum inhibitory concentration assay, their in vitro degradation potential, their plant growth-promotion traits, and performed whole genome sequencing to gain insight into the application of a phytoremediation strategy to remediate glyphosate contaminated agronomic soils. Twenty-four soil and root-associated bacterial strains were isolated. Sixteen could grow using glyphosate as the sole source of phosphorous. As shown in MIC assay, some strains tolerated up to 10000 mg kg-1 of glyphosate. Most of them also demonstrated a diverse spectrum of in vitro plant growth-promotion traits, confirmed in their genome sequences. Two representative isolates were studied for their root colonization. An isolate of Ochrobactrum haematophilum exhibited different colonization patterns in the rhizoplane compared to an isolate of Rhizobium sp. Both strains were able to metabolize almost 50% of the original glyphosate concentration of 50 mg l-1 in 9 days. In a microcosms experiment with Lotus corniculatus L, O. haematophilum performed better than Rhizobium, with 97% of glyphosate transformed after 20 days. The results suggest that L. corniculatus in combination with to O. haematophilum can be adopted for phytoremediation of glyphosate on agricultural soils. An effective strategy is presented of linking the experimental data from the isolation of tolerant bacteria with performing plant-bacteria interaction tests to demonstrate positive effects on the removal of glyphosate from soils.

14.
Commun Biol ; 2: 474, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31886414

RESUMEN

Pseudoalteromonas is a globally distributed marine-associated genus that can be found in a broad range of aquatic environments, including in association with macroalgal surfaces where they may take advantage of these rich sources of polysaccharides. The metabolic systems that confer the ability to metabolize this abundant form of photosynthetically fixed carbon, however, are not yet fully understood. Through genomics, transcriptomics, microbiology, and specific structure-function studies of pathway components we address the capacity of newly isolated marine pseudoalteromonads to metabolize the red algal galactan carrageenan. The results reveal that the κ/ι-carrageenan specific polysaccharide utilization locus (CarPUL) enables isolates possessing this locus the ability to grow on this substrate. Biochemical and structural analysis of the enzymatic components of the CarPUL promoted the development of a detailed model of the κ/ι-carrageenan metabolic pathway deployed by pseudoalteromonads, thus furthering our understanding of how these microbes have adapted to a unique environmental niche.


Asunto(s)
Organismos Acuáticos/metabolismo , Carragenina/metabolismo , Redes y Vías Metabólicas , Pseudoalteromonas/metabolismo , Sitios de Unión , Carragenina/química , Orden Génico , Glicósido Hidrolasas/química , Glicósido Hidrolasas/metabolismo , Modelos Moleculares , Sistemas de Lectura Abierta , Unión Proteica , Pseudoalteromonas/genética , Relación Estructura-Actividad
15.
Genes (Basel) ; 10(6)2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31212674

RESUMEN

Hydrocarbon-degrading bacteria are important resources for use in phytoremediation applications. Yet, for many hydrocarbonoclastic strains the genetic information regarding pollutant degradation and detoxification has not been thoroughly revealed. In this study, hydrocarbon-degrading bacteria were isolated from a long-term oil-polluted soil in Bóbrka, Poland. Pseudomonas spp. was the most dominant species. Of all 69 isolated strains tested in the laboratory using qualitative biochemical assays, 61% showed the capability to use diesel as sole carbon source, 33% could produce indole, 19% produced siderophores, 36% produced organic acids, and 54% were capable of producing 1-aminocyclopropane-1-carboxylate (ACC)-deaminase. From all morphologically and genetically different strains, two representative Pseudomonas spp., strain VI4.1 and VI4T1, were selected for genome sequencing. Genomic analyses indicated the presence of the full naphthalene dioxygenase operon (plasmid and chromosomal), of genes involved in the degradation of BTEX compounds (Benzene, Toluene, Ethylbenzene, Xylene) and alkanes (alkB gene) as well as the anthranilate degradation pathway (strain VI4T1) and terephthalate dioxygenase protein (strain VI4.1). Proton transfer reaction time-of-flight mass spectrometry (PTR-TOF-MS) analyses confirmed naphthalene and BTEX degradation within seven days. Motility, resistance to abiotic stresses, high and low temperatures, low pH, and salinity were confirmed at the genetic level and experimentally verified. The presence of multiple degradative and plant growth promotion genes, together with the in vitro experimental evidence, indicates the high value of these two strains and their potential use for sustainable site clean-up.


Asunto(s)
Genoma Bacteriano/genética , Hidrocarburos/química , Pseudomonas/genética , Contaminantes del Suelo/química , Benceno/química , Biodegradación Ambiental , Carbono/química , Gasolina , Variación Genética , Genómica , Hidrocarburos/toxicidad , Yacimiento de Petróleo y Gas/microbiología , Desarrollo de la Planta/genética , Polonia , Pseudomonas/metabolismo , Contaminantes del Suelo/toxicidad , Tolueno/química , Xilenos/química
16.
3 Biotech ; 9(3): 74, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30800585

RESUMEN

We report here on a high-quality draft genome sequence of Ochrobactrum haematophilum strain P6BS-III (DSM 106071), a Gram negative, non-sporulating bacterium isolated from a pastureland (Buenos Aires province, Argentina) which had been chronically exposed to the herbicide glyphosate. The genome of 5.25 Mb with a DNA G+C content of 56.63% size was estimated to contain 5,291 protein coding genes and 57 RNA genes. Genome analysis revealed the presence of the phn operon, which is involved in the phosphonate degradation pathway, and a class II 5-enolpyruvylshikimate-3-phosphate synthase (EPSP) that confers tolerance to glyphosate. Genes related to plant growth promotion traits are also present, and include genes for phosphorus metabolism, calcium phosphate and phytate solubilization, siderophore production, organic acid biosynthesis and indole acetic acid (IAA) production.

17.
Sci Total Environ ; 647: 690-698, 2019 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-30092525

RESUMEN

6:2 fluorotelomer sulfonamidoalkyl betaine (6:2 FTAB) is a major component of aqueous film-forming foams (AFFFs) used for firefighting and is frequently detected, along with one of its suspected transformation products, 6:2 fluorotelomer sulfonate (6:2 FTSA), in terrestrial and aquatic ecosystems impacted by AFFF usage. Biochemical processes underlying bacterial biodegradation of these compounds remain poorly understood due to a lack of pure culture studies. Here, we characterized the water-soluble and volatile breakdown products of 6:2 FTSA and 6:2 FTAB produced using Gordonia sp. strain NB4-1Y cultures over seven days under sulfur-limited conditions. After 168 h, 99.9% of 60 µM 6:2 FTSA was degraded into ten major breakdown products, with a mol% recovery of 88.2, while 70.4% of 60 µM 6:2 FTAB was degraded into ten major breakdown products, with a mol% recovery of 84.7. NB4-1Y uses two pathways for 6:2 FTSA metabolism, with 55 mol% of breakdown products assigned to a major pathway and <1.0 mol% assigned to a minor pathway. This work indicates that rapid transformation of 6:2 FTSA and 6:2 FTAB can be achieved under controlled conditions and improves the bacterial metabolism of these compounds.


Asunto(s)
Betaína/metabolismo , Fluorocarburos/metabolismo , Bacteria Gordonia/metabolismo , Azufre/metabolismo , Contaminantes Químicos del Agua/metabolismo , Alcanosulfonatos , Biodegradación Ambiental
18.
Front Plant Sci ; 9: 1134, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30123233

RESUMEN

Military activities have worldwide introduced toxic explosives into the environment with considerable effects on soil and plant-associated microbiota. Fortunately, these microorganisms, and their collective metabolic activities, can be harnessed for site restoration via in situ phytoremediation. We characterized the bacterial communities inhabiting the bulk soil and rhizosphere of sycamore maple (Acer pseudoplatanus) in two chronically 2,4,6-trinitrotoluene (TNT) polluted soils. Three hundred strains were isolated, purified and characterized, a majority of which showed multiple plant growth promoting (PGP) traits. Several isolates showed high nitroreductase enzyme activity and concurrent TNT-transformation. A 12-member bacterial consortium, comprising selected TNT-detoxifying and rhizobacterial strains, significantly enhanced TNT removal from soil compared to non-inoculated plants, increased root and shoot weight, and the plants were less stressed than the un-inoculated plants as estimated by the responses of antioxidative enzymes. The sycamore maple tree (SYCAM) culture collection is a significant resource of plant-associated strains with multiple PGP and catalytic properties, available for further genetic and phenotypic discovery and use in field applications.

19.
Genome Announc ; 6(18)2018 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-29724830

RESUMEN

Bacillus pumilus strain SCAL1 is an endophytic, thermophilic plant that was isolated from the leaf of a plant, Solanum lycopersicum L., in Sindh, Pakistan. B. pumilus strain SCAL1 has usually exhibited high resistance to environmental stresses, with a growth temperature ranging from 30 to 60°C. An approximately 3.75-Mb draft genome was assembled into 68 contigs.

20.
PLoS One ; 13(4): e0196032, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29694379

RESUMEN

We investigated the impacts of the Mount Polley tailings impoundment failure on chemical, physical, and microbial properties of substrates within the affected watershed, comprised of 70 hectares of riparian wetlands and 40 km of stream and lake shore. We established a biomonitoring network in October of 2014, two months following the disturbance, and evaluated riparian and wetland substrates for microbial community composition and function via 16S and full metagenome sequencing. A total of 234 samples were collected from substrates at 3 depths and 1,650,752 sequences were recorded in a geodatabase framework. These data revealed a wealth of information regarding watershed-scale distribution of microbial community members, as well as community composition, structure, and response to disturbance. Substrates associated with the impact zone were distinct chemically as indicated by elevated pH, nitrate, and sulphate. The microbial community exhibited elevated metabolic capacity for selenate and sulfate reduction and an abundance of chemolithoautotrophs in the Thiobacillus thiophilus/T. denitrificans/T. thioparus clade that may contribute to nitrate attenuation within the affected watershed. The most impacted area (a 6 km stream connecting two lakes) exhibited 30% lower microbial diversity relative to the remaining sites. The tailings impoundment failure at Mount Polley Mine has provided a unique opportunity to evaluate functional and compositional diversity soon after a major catastrophic disturbance to assess metabolic potential for ecosystem recovery.


Asunto(s)
Bacterias/clasificación , Metagenómica/métodos , ARN Ribosómico 16S/genética , Bacterias/genética , Bacterias/metabolismo , Biodiversidad , Concentración de Iones de Hidrógeno , Minería , Nitratos/metabolismo , Análisis de Secuencia de ADN , Suelo/química , Agua/química , Humedales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...