Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
J Pediatr Endocrinol Metab ; 37(5): 451-461, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38618862

RESUMEN

OBJECTIVES: To understand possible predictors of the onset of menses after gonadotropin-releasing hormone agonist treatment cessation in girls with central precocious puberty (CPP). METHODS: This exploratory post hoc analysis of a phase 3 and 4 trial of girls with CPP treated with once-monthly intramuscular leuprolide acetate examined onset of menses after treatment completion using a time-to-event analysis. Pretreatment and end-of-treatment chronologic age (CA), bone age (BA)/CA ratio, and Tanner breast stage; pretreatment menses status; and end-of-treatment BA and body mass index (BMI) were studied as potential factors influencing the onset of menses. RESULTS: Median time to first menses after stopping treatment was 18.3 months among 35 girls (mean age at onset of treatment, 6.8 years) examined. Of 26 girls experiencing menses, 11 (42 %) menstruated at 16-21 months after stopping treatment. Most girls with pretreatment BA/CA≥1.4 started menstruating very close to 18 months after stopping treatment; those with less advanced BA/CA experienced menses at 9-18 months. End-of-treatment BA/CA≥1.2 was associated with a quicker onset of menses (14.5 vs. 18.5 months for BA/CA<1.2, p=0.006). End-of-treatment BA≥12 years predicted longer time to menses. No relationship with time to menses was observed for pretreatment menarche status, pretreatment or end-of-treatment Tanner breast stage (<3/≥3) or CA (<6/≥6 or ≤11/>11), or end-of-treatment BMI percentiles (<85.6/≥85.6 and <92.6/≥92.6). CONCLUSIONS: Pretreatment menarche status or CA do not appear to predict onset of menses, but pre- and end-of-treatment BA/CA may be helpful in anticipating time to first menses after stopping treatment.


Asunto(s)
Hormona Liberadora de Gonadotropina , Leuprolida , Menstruación , Pubertad Precoz , Niño , Femenino , Humanos , Determinación de la Edad por el Esqueleto , Índice de Masa Corporal , Estudios de Seguimiento , Hormona Liberadora de Gonadotropina/agonistas , Leuprolida/uso terapéutico , Leuprolida/administración & dosificación , Menarquia/efectos de los fármacos , Menstruación/efectos de los fármacos , Pronóstico , Pubertad Precoz/tratamiento farmacológico , Factores de Tiempo
3.
J Pediatr Endocrinol Metab ; 36(3): 299-308, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36473097

RESUMEN

OBJECTIVES: It is important to understand what variables influence change in predicted adult height (PAH) throughout GnRHa treatment for central precocious puberty (CPP) to individualize treatment decisions and optimize care. METHODS: Changes in PAH, chronological age (CA), bone age (BA), BA/CA, and height velocity (HV) were evaluated in girls with CPP throughout treatment with leuprolide acetate (n=77). A second analysis focused on changes in the 3 years preceding the first observed BA of ≥12 years. Relationships were characterized using plot inspection and linear mixed-effects analyses. Association between treatment duration and last assessed PAH was examined using multiple linear regression models. RESULTS: BA/CA and HV showed a nonlinear change during treatment, with the largest changes and improvement in PAH observed in the first 6-18 months. Rate of BA advancement tended to decrease more slowly in girls initiating treatment at a younger BA. On-treatment change in PAH was predicted by concurrent BA/CA change, HV, and BA, as well as CA at treatment initiation. Last assessed PAH was positively associated with longer treatment durations (primary/exploratory models cut-offs of ≥33/≥55 months). CONCLUSIONS: These findings support individualized monitoring during GnRHa treatment. Initial response should be interpreted with caution until 6-18 months after treatment initiation and failure should not be assumed based on continued bone maturation in girls starting therapy at a younger age. Treatment cessation should not be automatically based on a diminishing change in PAH or HV, as ongoing treatment may result in continued increase or maintenance of PAH.


Asunto(s)
Estatura , Hormona Liberadora de Gonadotropina , Leuprolida , Pubertad Precoz , Adulto , Femenino , Humanos , Determinación de la Edad por el Esqueleto , Factores de Edad , Estatura/efectos de los fármacos , Duración de la Terapia , Hormona Liberadora de Gonadotropina/agonistas , Leuprolida/uso terapéutico , Medicina de Precisión , Pubertad Precoz/tratamiento farmacológico
4.
Methods Enzymol ; 408: 445-63, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16793386

RESUMEN

Homologous recombination is an important means of eliminating DNA double strand breaks from chromosomes. The homologous recombination reaction is mediated by the Rad51 recombinase, which requires a number of ancillary factors for maximal efficiency. The development of purification procedures and biochemical assays for yeast Rad51 and other yeast recombination proteins has allowed investigators to begin dissecting the hierarchy of physical and functional interactions among these protein factors that govern the integrity of the homologous recombination machinery. The biochemical studies done with yeast recombination factors have helped formulate conceptual frameworks to guide similar endeavors in other eukaryotes, including humans. Continuing efforts with reconstituted systems that comprise yeast factors will undoubtedly continue to provide insights into the mechanistic intricacy of the homologous recombination machinery.


Asunto(s)
Recombinación Genética , Proteínas de Saccharomyces cerevisiae , Daño del ADN , ADN Helicasas , Reparación del ADN , Enzimas Reparadoras del ADN , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/ultraestructura , Recombinasa Rad51/genética , Recombinasa Rad51/aislamiento & purificación , Recombinasa Rad51/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/aislamiento & purificación , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteína de Replicación A/genética , Proteína de Replicación A/aislamiento & purificación , Proteína de Replicación A/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
DNA Repair (Amst) ; 5(3): 381-91, 2006 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-16388992

RESUMEN

The Rad51 recombinase polymerizes on ssDNA to yield a right-handed nucleoprotein filament, called the presynaptic filament, that can search for homology in duplex DNA and pair the recombining DNA molecules to form a DNA joint. ATP is needed for presynaptic filament assembly and homologous DNA pairing, but the roles of ATP binding and ATP hydrolysis in the overall reaction scheme have not yet been clearly defined. To address this issue, we have constructed two mutants of hRad51, hRad51 K133A and hRad51 K133R, expressed these mutant variants in Escherichia coli, and purified them to near homogeneity. Both hRad51 mutant variants are greatly attenuated for ATPase activity, but hRad51 K133R retains the ability to protect DNA from restriction enzyme digest and induce topological changes in duplex DNA in an ATP-dependent manner, whereas the hRad51 K133A variant is inactive. With biochemical means, we show that the presynaptic filament becomes greatly stabilized when ATP hydrolysis is prevented, leading to an enhanced ability of the presynaptic filament to catalyze homologous pairing. These results help form the basis for understanding the functions of ATP binding and ATP hydrolysis in hRad51-mediated recombination reactions.


Asunto(s)
Adenosina Trifosfato/metabolismo , ADN/metabolismo , Recombinasa Rad51/metabolismo , Adenosina Trifosfatasas/metabolismo , Sitios de Unión/genética , ADN/genética , Ensayo de Cambio de Movilidad Electroforética , Humanos , Hidrólisis , Mutagénesis Sitio-Dirigida , Unión Proteica , Recombinasa Rad51/genética , Recombinasa Rad51/ultraestructura , Recombinación Genética
6.
Mol Cell Biol ; 26(3): 976-89, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16428451

RESUMEN

Homologous recombination is a versatile DNA damage repair pathway requiring Rad51 and Rad54. Here we show that a mammalian Rad54 paralog, Rad54B, displays physical and functional interactions with Rad51 and DNA that are similar to those of Rad54. While ablation of Rad54 in mouse embryonic stem (ES) cells leads to a mild reduction in homologous recombination efficiency, the absence of Rad54B has little effect. However, the absence of both Rad54 and Rad54B dramatically reduces homologous recombination efficiency. Furthermore, we show that Rad54B protects ES cells from ionizing radiation and the interstrand DNA cross-linking agent mitomycin C. Interestingly, at the ES cell level the paralogs do not display an additive or synergic interaction with respect to mitomycin C sensitivity, yet animals lacking both Rad54 and Rad54B are dramatically sensitized to mitomycin C compared to either single mutant. This suggests that the paralogs possibly function in a tissue-specific manner. Finally, we show that Rad54, but not Rad54B, is needed for a normal distribution of Rad51 on meiotic chromosomes. Thus, even though the paralogs have similar biochemical properties, genetic analysis in mice uncovered their nonoverlapping roles.


Asunto(s)
Daño del ADN , ADN Helicasas/fisiología , Reparación del ADN , Proteínas Nucleares/fisiología , Recombinación Genética , Animales , Antibióticos Antineoplásicos/farmacología , Aberraciones Cromosómicas , Cromosomas/química , ADN Helicasas/genética , Proteínas de Unión al ADN , Resistencia a Antineoplásicos/efectos de los fármacos , Humanos , Meiosis , Ratones , Ratones Mutantes , Mitomicina/farmacología , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Recombinasa Rad51/análisis , Recombinasa Rad51/metabolismo , Tolerancia a Radiación/genética , Células Madre/efectos de los fármacos , Células Madre/enzimología , Células Madre/efectos de la radiación
7.
Mol Cell Biol ; 25(23): 10492-506, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16287861

RESUMEN

Werner syndrome, caused by mutations of the WRN gene, mimics many changes of normal aging. Although roles for WRN protein in DNA replication, recombination, and telomere maintenance have been suggested, the pathology of rapidly dividing cells is not a feature of Werner syndrome. To identify cellular events that are specifically vulnerable to WRN deficiency, we used RNA interference (RNAi) to knockdown WRN or BLM (the RecQ helicase mutated in Bloom syndrome) expression in primary human fibroblasts. Withdrawal of WRN or BLM produced accelerated cellular senescence phenotype and DNA damage response in normal fibroblasts, as evidenced by induction of gammaH2AX and 53BP1 nuclear foci. After WRN depletion, the induction of these foci was seen most prominently in nondividing cells. Growth in physiological (3%) oxygen or in the presence of an antioxidant prevented the development of the DNA damage foci in WRN-depleted cells, whereas acute oxidative stress led to inefficient repair of the lesions. Furthermore, WRN RNAi-induced DNA damage was suppressed by overexpression of the telomere-binding protein TRF2. These conditions, however, did not prevent the DNA damage response in BLM-ablated cells, suggesting a distinct role for WRN in DNA homeostasis in vivo. Thus, manifestations of Werner syndrome may reflect an impaired ability of slowly dividing cells to limit oxidative DNA damage.


Asunto(s)
Daño del ADN , ADN Helicasas/metabolismo , ADN/genética , Estrés Oxidativo/fisiología , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Proliferación Celular , Células Cultivadas , Senescencia Celular , Daño del ADN/efectos de los fármacos , ADN Helicasas/genética , Replicación del ADN , Exodesoxirribonucleasas , Fibroblastos , Regulación de la Expresión Génica , Humanos , Oxidación-Reducción/efectos de los fármacos , Oxígeno/farmacología , Interferencia de ARN , RecQ Helicasas , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Helicasa del Síndrome de Werner
8.
J Biol Chem ; 280(9): 7854-60, 2005 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-15634678

RESUMEN

The MPH1 (mutator pHenotype 1) gene of Saccharomyces cerevisiae was identified on the basis of elevated spontaneous mutation rates of haploid cells deleted for this gene. Further studies showed that MPH1 functions to channel DNA lesions into an error-free DNA repair pathway. The Mph1 protein contains the seven conserved motifs of the superfamily 2 (SF2) family of nucleic acid unwinding enzymes. Genetic analyses have found epistasis of the mph1 deletion with mutations in the RAD52 gene group that mediates homologous recombination and DNA repair by homologous recombination. To begin dissecting the biochemical functions of the MPH1-encoded product, we have expressed it in yeast cells and purified it to near homogeneity. We show that Mph1 has a robust ATPase function that requires single-stranded DNA for activation. Consistent with its homology to members of the SF2 helicase family, we find a DNA helicase activity in Mph1. We present data to demonstrate that the Mph1 DNA helicase activity is fueled by ATP hydrolysis and has a 3' to 5' polarity with respect to the DNA strand on which this protein translocates. The DNA helicase activity of Mph1 is enhanced by the heterotrimeric single-stranded DNA binding protein replication protein A. These results, thus, establish Mph1 as an ATP-dependent DNA helicase, and the availability of purified Mph1 should facilitate efforts at deciphering the role of this protein in homologous recombination and mutation avoidance.


Asunto(s)
ADN Helicasas/genética , Mutación , ARN Helicasas/fisiología , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , ARN Helicasas DEAD-box , ADN/química , Reparación del ADN , ADN de Cadena Simple/química , Relación Dosis-Respuesta a Droga , Activación Enzimática , Epítopos/química , Hidrólisis , Magnesio/química , Conformación de Ácido Nucleico , Oligonucleótidos/química , Cloruro de Potasio/química , Transporte de Proteínas , ARN Helicasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Factores de Tiempo
9.
J Biol Chem ; 280(4): 2620-7, 2005 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-15546877

RESUMEN

The Saccharomyces cerevisiae Rad50-Mre11-Xrs2 complex plays a central role in the cellular response to DNA double strand breaks. Rad50 has a globular ATPase head domain with a long coiled-coil tail. DNA binding by Rad50 is ATP-dependent and the Rad50-Mre11-Xrs2 complex possesses DNA unwinding and endonuclease activities that are regulated by ATP. Here we have examined the role of the Rad50 Walker type A ATP binding motif in DNA double strand break repair by a combination of genetic and biochemical approaches. Replacement of the conserved lysine residue within the Walker A motif with alanine, glutamate, or arginine results in the same DNA damage sensitivity and homologous recombination defect as the rad50 deletion mutation. The Walker A mutations also cause a deficiency in non-homologous end-joining. As expected, complexes containing the rad50 Walker A mutant proteins are defective in ATPase, ATP-dependent DNA unwinding, and ATP-stimulated endonuclease activities. Although the DNA end-bridging activity of the Rad50-Mre11-Xrs2 complex is ATP-independent, the end-bridging activity of complexes containing the rad50 Walker A mutant proteins is salt-sensitive. These results provide a molecular explanation for the observed in vivo defects of the rad50 Walker mutant strains and reveal a novel ATP-independent function for Rad50 in DNA end-bridging.


Asunto(s)
Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/fisiología , Mutación , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/fisiología , Adenosina Trifosfatasas/química , Adenosina Trifosfato/química , Alanina/química , Secuencias de Aminoácidos , Arginina/química , ADN/química , Relación Dosis-Respuesta en la Radiación , Endonucleasas/metabolismo , Rayos gamma , Prueba de Complementación Genética , Ácido Glutámico/química , Lisina/química , Plásmidos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Recombinación Genética , Factores de Tiempo
10.
J Biol Chem ; 279(50): 51973-80, 2004 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-15465810

RESUMEN

In eukaryotes, Rad51 and Rad54 functionally cooperate to mediate homologous recombination and the repair of damaged chromosomes by recombination. Rad51, the eukaryotic counterpart of the bacterial RecA recombinase, forms filaments on single-stranded DNA that are capable of pairing the bound DNA with a homologous double-stranded donor to yield joint molecules. Rad54 enhances the homologous DNA pairing reaction, and this stimulatory effect involves a physical interaction with Rad51. Correspondingly, the ability of Rad54 to hydrolyze ATP and introduce superhelical tension into covalently closed circular plasmid DNA is stimulated by Rad51. By controlled proteolysis, we show that the amino-terminal region of yeast Rad54 is rather unstructured. Truncation mutations that delete the N-terminal 113 or 129 amino acid residues of Rad54 attenuate or ablate physical and functional interactions with Rad51 under physiological ionic strength, respectively. Surprisingly, under less stringent conditions, the Rad54 Delta129 protein can interact with Rad51 in affinity pull-down and functional assays. These results highlight the functional importance of the N-terminal Rad51 interaction domain of Rad54 and reveal that Rad54 contacts Rad51 through separable epitopes.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , ADN Helicasas , Reparación del ADN , Enzimas Reparadoras del ADN , ADN Recombinante/genética , ADN Recombinante/metabolismo , ADN Superhelicoidal/genética , ADN Superhelicoidal/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrólisis , Datos de Secuencia Molecular , Recombinasa Rad51 , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/química , Eliminación de Secuencia , Homología de Secuencia de Aminoácido
11.
Genetics ; 166(4): 1701-13, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15126391

RESUMEN

The Rad50:Mre11:Xrs2 (RMX) complex functions in repair of DNA double-strand breaks (DSBs) by recombination and nonhomologous end-joining (NHEJ) and is also required for telomere stability. The Mre11 subunit exhibits nuclease activities in vitro, but the role of these activities in repair in mitotic cells has not been established. In this study we have performed a comparative study of three mutants (mre11-D16A, -D56N, and -H125N) previously shown to have reduced nuclease activities in vitro. In ends-in and ends-out chromosome recombination assays using defined plasmid and oligonucleotide DNA substrates, mre11-D16A cells were as deficient as mre11 null strains, but defects were small in mre11-D56N and -H125N mutants. mre11-D16A cells, but not the other mutants, also displayed strong sensitivity to ionizing radiation, with residual resistance largely dependent on the presence of the partially redundant nuclease Exo1. mre11-D16A mutants were also most sensitive to the S-phase-dependent clastogens hydroxyurea and methyl methanesulfonate but, as previously observed for D56N and H125N mutants, were not defective in NHEJ. Importantly, the affinity of purified Mre11-D16A protein for Rad50 and Xrs2 was indistinguishable from wild type and the mutant protein formed complexes with equivalent stoichiometry. Although the role of the nuclease activity has been questioned in previous studies, the comparative data presented here suggest that the nuclease function of Mre11 is required for RMX-mediated recombinational repair and telomere stabilization in mitotic cells.


Asunto(s)
Reparación del ADN , ADN/metabolismo , Desoxirribonucleasas/metabolismo , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Mitosis/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/genética , Exodesoxirribonucleasas/genética , Conversión Génica , Mutagénesis Sitio-Dirigida , Mutación/genética , Oligonucleótidos , Plásmidos/genética , Recombinación Genética/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Telómero/genética
12.
J Biol Chem ; 279(23): 24081-8, 2004 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-15056673

RESUMEN

Yeast RAD54 gene, a member of the RAD52 epistasis group, plays an important role in homologous recombination and DNA double strand break repair. Rad54 belongs to the Snf2/Swi2 protein family, and it possesses a robust DNA-dependent ATPase activity, uses free energy from ATP hydrolysis to supercoil DNA, and cooperates with the Rad51 recombinase in DNA joint formation. There are two RAD54-homologous genes in human cells, hRAD54 and RAD54B. Mutations in these human genes have been found in tumors. These tumor-associated mutations map to conserved regions of the hRad54 and hRad54B proteins. Here we introduced the equivalent mutations into the Saccharomyces cerevisiae RAD54 gene in an effort to examine the functional consequences of these gene changes. One mutant, rad54 G484R, showed sensitivity to DNA-damaging agents and reduced homologous recombination rates, indicating a loss of function. Even though the purified rad54 G484R mutant protein retained the ability to bind DNA and interact with Rad51, it was nearly devoid of ATPase activity and was similarly defective in DNA supercoiling and D-loop formation. Two other mutants, rad54 N616S and rad54 D442Y, were not sensitive to genotoxic agents and behaved like the wild type allele in homologous recombination assays. Consistent with the mild phenotype associated with the rad54 N616S allele, its encoded protein was similar to wild type Rad54 protein in biochemical attributes. Because dysfunctional homologous recombination gives rise to genome instability, our results are consistent with the premise that tumor-associated mutations in hRad54 and Rad54B could contribute to the tumor phenotype or enhance the genome instability seen in tumor cells.


Asunto(s)
Mutación , Neoplasias/genética , Proteínas de Saccharomyces cerevisiae/genética , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Alelos , Secuencia de Aminoácidos , División Celular , ADN/metabolismo , Daño del ADN , ADN Helicasas , Reparación del ADN , Enzimas Reparadoras del ADN , ADN-Topoisomerasas de Tipo I/metabolismo , ADN Superhelicoidal/genética , Proteínas de Unión al ADN/metabolismo , Diploidia , Relación Dosis-Respuesta a Droga , Genoma Fúngico , Humanos , Hidrólisis , Datos de Secuencia Molecular , Fenotipo , Unión Proteica , Estructura Terciaria de Proteína , Recombinasa Rad51 , Recombinación Genética , Factores de Tiempo
13.
J Biol Chem ; 279(22): 23193-9, 2004 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-15047689

RESUMEN

Mutants of the Saccharomyces cerevisiae SRS2 gene are hyperrecombinogenic and sensitive to genotoxic agents, and they exhibit a synthetic lethality with mutations that compromise DNA repair or other chromosomal processes. In addition, srs2 mutants fail to adapt or recover from DNA damage checkpoint-imposed G2/M arrest. These phenotypic consequences of ablating SRS2 function are effectively overcome by deleting genes of the RAD52 epistasis group that promote homologous recombination, implicating an untimely recombination as the underlying cause of the srs2 mutant phenotypes. TheSRS2-encodedproteinhasasingle-stranded (ss) DNA-dependent ATPase activity, a DNA helicase activity, and an ability to disassemble the Rad51-ssDNA nucleoprotein filament, which is the key catalytic intermediate in Rad51-mediated recombination reactions. To address the role of ATP hydrolysis in Srs2 protein function, we have constructed two mutant variants that are altered in the Walker type A sequence involved in the binding and hydrolysis of ATP. The srs2 K41A and srs2 K41R mutant proteins are both devoid of ATPase and helicase activities and the ability to displace Rad51 from ssDNA. Accordingly, yeast strains harboring these srs2 mutations are hyperrecombinogenic and sensitive to methylmethane sulfonate, and they become inviable upon introducing either the sgs1Delta or rad54Delta mutation. These results highlight the importance of the ATP hydrolysisfueled DNA motor activity in SRS2 functions.


Asunto(s)
Adenosina Trifosfato/metabolismo , ADN Helicasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , ADN/metabolismo , ADN Helicasas/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Hidrólisis , Mutación , Proteína Recombinante y Reparadora de ADN Rad52 , Recombinasas/antagonistas & inhibidores , Recombinación Genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
14.
J Biol Chem ; 278(49): 48957-64, 2003 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-14522986

RESUMEN

Saccharomyces cerevisiae Rad50, Mre11, and Xrs2 proteins are involved in homologous recombination, non-homologous end-joining, DNA damage checkpoint signaling, and telomere maintenance. These proteins form a stable complex that has nuclease, DNA binding, and DNA end recognition activities. Of the components of the Rad50.Mre11.Xrs2 complex, Xrs2 is the least characterized. The available evidence is consistent with the idea that Xrs2 recruits other protein factors in reactions that pertain to the biological functions of the Rad50.Mre11.Xrs2 complex. Here we present biochemical evidence that Xrs2 has an associated DNA-binding activity that is specific for DNA structures. We also define the contributions of Xrs2 to the activities of the Rad50.Mre11.Xrs2 complex. Importantly, we demonstrate that Xrs2 is critical for targeting of Rad50 and Mre11 to DNA ends. Thus, Xrs2 likely plays a direct role in the engagement of DNA substrates by the Rad50. Mre11.Xrs2 complex in various biological processes.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Secuencia de Bases , ADN Helicasas , ADN de Hongos/metabolismo , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación
15.
J Biol Chem ; 278(45): 44331-7, 2003 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-12966095

RESUMEN

Saccharomyces cerevisiae SRS2 encodes an ATP-dependent DNA helicase that is needed for DNA damage checkpoint responses and that modulates the efficiency of homologous recombination. Interestingly, strains simultaneously mutated for SRS2 and a variety of DNA repair genes show low viability that can be overcome by inactivating homologous recombination, thus implicating inappropriate recombination as the cause of growth impairment in these mutants. Here, we report on our biochemical characterization of the ATPase and DNA helicase activities of Srs2. ATP hydrolysis by Srs2 occurs efficiently only in the presence of DNA, with ssDNA being considerably more effective than dsDNA in this regard. Using homopolymeric substrates, the minimal DNA length for activating ATP hydrolysis is found to be 5 nucleotides, but a length of 10 nucleotides is needed for maximal activation. In its helicase action, Srs2 prefers substrates with a 3' ss overhang, and approximately 10 bases of 3' overhanging DNA is needed for efficient targeting of Srs2 to the substrate. Even though a 3' overhang serves to target Srs2, under optimized conditions blunt-end DNA substrates are also dissociated by this protein. The ability of Srs2 to unwind helicase substrates with a long duplex region is enhanced by the inclusion of the single-strand DNA-binding factor replication protein A.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , ADN Helicasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo , ADN/metabolismo , ADN/farmacología , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/farmacología , Concentración de Iones de Hidrógeno , Hidrólisis , Magnesio/farmacología , Manganeso/farmacología , Saccharomyces cerevisiae/enzimología , Especificidad por Sustrato , Temperatura
18.
Mol Cell ; 12(1): 221-32, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12887907

RESUMEN

Repair of DNA double-strand breaks (DSBs) by homologous recombination requires members of the RAD52 epistasis group. Here we use chromatin immunoprecipitation (ChIP) to examine the temporal order of recruitment of Rad51p, Rad52p, Rad54p, Rad55p, and RPA to a single, induced DSB in yeast. Our results suggest a sequential, interdependent assembly of Rad proteins adjacent to the DSB initiated by binding of Rad51p. ChIP time courses from various mutant strains and additional biochemical studies suggest that Rad52p, Rad55p, and Rad54p each help promote the formation and/or stabilization of the Rad51p nucleoprotein filament. We also find that all four Rad proteins associate with homologous donor sequences during strand invasion. These studies provide a near comprehensive view of the molecular events required for the in vivo assembly of a functional Rad51p presynaptic filament.


Asunto(s)
Daño del ADN/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , ADN/genética , Recombinación Genética/genética , Levaduras/genética , Células Cultivadas , ADN Helicasas , Enzimas Reparadoras del ADN , Recombinasa Rad51 , Proteína Recombinante y Reparadora de ADN Rad52 , Proteína de Replicación A , Proteínas de Saccharomyces cerevisiae/genética , Levaduras/metabolismo
19.
Nature ; 423(6937): 305-9, 2003 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-12748644

RESUMEN

Mutations in the Saccharomyces cerevisiae gene SRS2 result in the yeast's sensitivity to genotoxic agents, failure to recover or adapt from DNA damage checkpoint-mediated cell cycle arrest, slow growth, chromosome loss, and hyper-recombination. Furthermore, double mutant strains, with mutations in DNA helicase genes SRS2 and SGS1, show low viability that can be overcome by inactivating recombination, implying that untimely recombination is the cause of growth impairment. Here we clarify the role of SRS2 in recombination modulation by purifying its encoded product and examining its interactions with the Rad51 recombinase. Srs2 has a robust ATPase activity that is dependent on single-stranded DNA (ssDNA) and binds Rad51, but the addition of a catalytic quantity of Srs2 to Rad51-mediated recombination reactions causes severe inhibition of these reactions. We show that Srs2 acts by dislodging Rad51 from ssDNA. Thus, the attenuation of recombination efficiency by Srs2 stems primarily from its ability to dismantle the Rad51 presynaptic filament efficiently. Our findings have implications for the basis of Bloom's and Werner's syndromes, which are caused by mutations in DNA helicases and are characterized by increased frequencies of recombination and a predisposition to cancers and accelerated ageing.


Asunto(s)
ADN Helicasas/metabolismo , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/metabolismo , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Supervivencia Celular , Emparejamiento Cromosómico , Intercambio Genético , ADN Helicasas/genética , Reparación del ADN , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , ADN de Cadena Simple/ultraestructura , Unión Proteica , Recombinasa Rad51 , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Ácido Nucleico
20.
J Biol Chem ; 278(11): 9212-8, 2003 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-12514177

RESUMEN

In eukaryotic cells, the repair of DNA double-strand breaks by homologous recombination requires a RecA-like recombinase, Rad51p, and a Swi2p/Snf2p-like ATPase, Rad54p. Here we find that yeast Rad51p and Rad54p support robust homologous pairing between single-stranded DNA and a chromatin donor. In contrast, bacterial RecA is incapable of catalyzing homologous pairing with a chromatin donor. We also show that Rad54p possesses many of the biochemical properties of bona fide ATP-dependent chromatin-remodeling enzymes, such as ySWI/SNF. Rad54p can enhance the accessibility of DNA within nucleosomal arrays, but it does not seem to disrupt nucleosome positioning. Taken together, our results indicate that Rad54p is a chromatin-remodeling enzyme that promotes homologous DNA pairing events within the context of chromatin.


Asunto(s)
Cromatina/química , Cromatina/metabolismo , Proteínas Nucleares , Ácidos Nucleicos Heterodúplex/química , Proteínas de Saccharomyces cerevisiae/fisiología , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , ADN/metabolismo , ADN Helicasas , Enzimas Reparadoras del ADN , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/metabolismo , Conformación de Ácido Nucleico , Nucleosomas/metabolismo , Unión Proteica , Recombinasa Rad51 , Rec A Recombinasas/metabolismo , Recombinación Genética , Proteínas de Saccharomyces cerevisiae/química , Temperatura , Factores de Tiempo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA