Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Pharm Biomed Anal ; 236: 115690, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37688907

RESUMEN

Quantitative structure-retention relationship models (QSRR) have been utilized as an alternative to costly and time-consuming separation analyses and associated experiments for predicting retention time. However, achieving 100 % accuracy in retention prediction is unrealistic despite the existence of various tools and approaches. The limitations of vast data availability and time complexity hinder the use of most algorithms for retention prediction. Therefore, in this study, we examined and compared two approaches for modelling retention time using a dataset of small molecules with retention times obtained at multiple conditions, referred to as multi-targets (five pH levels: 2.7, 3.5, 5, 6.5, and 8 at gradient times of 20 min of mobile phase). The first approach involved developing separate models for predicting retention time at each condition (single-target approach), while the second approach aimed to learn a single model for predicting retention across all conditions simultaneously (multi-target approach). Our findings highlight the advantages of the multi-target approach over the single-target modelling approach. The multi-target models are more efficient in terms of size and learning speed compared to the single-target models. These retention prediction models offer two-fold benefits. Firstly, they enhance knowledge and understanding of retention times, identifying molecular descriptors that contribute to changes in retention behaviour under different pH conditions. Secondly, these approaches can be extended to address other multi-target property prediction problems, such as multi-quantitative structure Property(X) relationship studies (mt-QS(X)R).

2.
J Pharm Biomed Anal ; 233: 115475, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37235958

RESUMEN

Surface-enhanced Raman scattering (SERS) is a vibrational widely used technique thanks to its multiple advantages such as its high specificity and sensitivity. The Raman signal exaltation comes from the use of metallic nanoparticles (Nps) acting as antennas by amplifying the Raman scattering. Controlling the Nps synthesis is a major point for the implementation of SERS in routine analysis and especially in quantitative applications. Effectively, nature, size and shape of these Nps considerably influence the SERS response intensity and repeatability. The Lee-Meisel protocol is the most common synthesis route used by the SERS community due to the low cost, rapidity and ease of manufacturing. However, this process leads to a significant heterogeneity in terms of particle size and shape. In this context, this study aimed to synthesize repeatable and homogeneous silver nanoparticles (AgNps) by chemical reduction. The Quality by Design strategy from quality target product profile to early characterization design was considered to optimize this reaction. The first step of this strategy aimed to highlight critical parameters by the means of an early characterization design. Based on an Ishikawa diagram, five process parameters were studied: the reaction volume as categorical variable and the temperature, the time of reaction, the trisodium citrate concentration and pH as continuous variables. A D-Optimal design of 35 conditions was performed. Three critical quality attributes were selected to maximize the SERS intensity, minimize the variation coefficient on SERS intensities and the polydispersity index of the AgNps. Considering these factors, it appeared that concentration, pH and time of reaction were identified as having a critical impact on the Nps formation and can then be considered for the further optimization step.


Asunto(s)
Nanopartículas del Metal , Nanopartículas del Metal/química , Plata/química , Espectrometría Raman/métodos , Tamaño de la Partícula
3.
Molecules ; 28(4)2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36838689

RESUMEN

Reversed-Phase Liquid Chromatography (RPLC) is a common liquid chromatographic mode used for the control of pharmaceutical compounds during their drug life cycle. Nevertheless, determining the optimal chromatographic conditions that enable this separation is time consuming and requires a lot of lab work. Quantitative Structure Retention Relationship models (QSRR) are helpful for doing this job with minimal time and cost expenditures by predicting retention times of known compounds without performing experiments. In the current work, several QSRR models were built and compared for their adequacy in predicting the retention times. The regression models were based on a combination of linear and non-linear algorithms such as Multiple Linear Regression, Support Vector Regression, Least Absolute Shrinkage and Selection Operator, Random Forest, and Gradient Boosted Regression. Models were built for five pH conditions, i.e., at pH 2.7, 3.5, 6.5, and 8.0. In the end, the model predictions were combined using stacking and the performances of all models were compared. The k-nearest neighbor-based application domain filter was established to assess the reliability of the prediction for further compound prioritization. Altogether, this study can be insightful for analytical chemists working with RPLC to begin with the computational prediction modeling such as QSRR to predict the separation of small molecules.


Asunto(s)
Cromatografía de Fase Inversa , Relación Estructura-Actividad Cuantitativa , Reproducibilidad de los Resultados , Cromatografía Liquida/métodos , Algoritmos , Cromatografía Líquida de Alta Presión/métodos
4.
Molecules ; 27(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36500399

RESUMEN

In the pharmaceutical field, and more precisely in quality control laboratories, robust liquid chromatographic methods are needed to separate and analyze mixtures of compounds. The development of such chromatographic methods for new mixtures can result in a long and tedious process even while using the design of experiments methodology. However, developments could be accelerated with the help of in silico screening. In this work, the usefulness of a strategy combining response surface methodology (RSM) followed by multicriteria decision analysis (MCDA) applied to predictions from a quantitative structure-retention relationship (QSRR) model is demonstrated. The developed strategy shows that selecting equations for the retention time prediction models based on the pKa of the compound allows flexibility in the models. The MCDA developed is shown to help to make decisions on different criteria while being robust to the user's decision on the weights for each criterion. This strategy is proposed for the screening phase of the method lifecycle. The strategy offers the possibility to the user to select chromatographic conditions based on multiple criteria without being too sensitive to the importance given to them. The conditions with the highest desirability are defined as the starting point for further optimization steps.


Asunto(s)
Cromatografía de Fase Inversa , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida , Preparaciones Farmacéuticas
5.
Data Brief ; 42: 108017, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35310817

RESUMEN

There is a rising interest in the modeling and predicting of chromatographic retention. The progress towards more complex and comprehensive models emphasized the need for broad reliable datasets. The present dataset comprises small pharmaceutical compounds selected to cover a wide range in terms of physicochemical properties that are known to impact the retention in reversed-phase liquid chromatography. Moreover, this dataset was analyzed at five pH with two gradient slopes. It provides a reliable dataset with a diversity of conditions and compounds to support the building of new models. To enhance the robustness of the dataset, the compounds were injected individually, and each sequence of injections included a quality control sample. This unambiguous detection of each compound as well as a systematic analysis of a quality control sample ensured the quality of the reported retention times. Moreover, three different liquid chromatographic systems were used to increase the robustness of the dataset.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...