Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Nat Prod ; 87(4): 798-809, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38412432

RESUMEN

Structural and functional studies of the carminomycin 4-O-methyltransferase DnrK are described, with an emphasis on interrogating the acceptor substrate scope of DnrK. Specifically, the evaluation of 100 structurally and functionally diverse natural products and natural product mimetics revealed an array of pharmacophores as productive DnrK substrates. Representative newly identified DnrK substrates from this study included anthracyclines, angucyclines, anthraquinone-fused enediynes, flavonoids, pyranonaphthoquinones, and polyketides. The ligand-bound structure of DnrK bound to a non-native fluorescent hydroxycoumarin acceptor, 4-methylumbelliferone, along with corresponding DnrK kinetic parameters for 4-methylumbelliferone and native acceptor carminomycin are also reported for the first time. The demonstrated unique permissivity of DnrK highlights the potential for DnrK as a new tool in future biocatalytic and/or strain engineering applications. In addition, the comparative bioactivity assessment (cancer cell line cytotoxicity, 4E-BP1 phosphorylation, and axolotl embryo tail regeneration) of a select set of DnrK substrates/products highlights the ability of anthracycline 4-O-methylation to dictate diverse functional outcomes.


Asunto(s)
Metiltransferasas , Metiltransferasas/metabolismo , Metiltransferasas/química , Estructura Molecular , Productos Biológicos/farmacología , Productos Biológicos/química , Humanos , Antraciclinas/química , Antraciclinas/farmacología , Especificidad por Sustrato
2.
Proc Natl Acad Sci U S A ; 120(9): e2220468120, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36802426

RESUMEN

The enediynes are structurally characterized by a 1,5-diyne-3-ene motif within a 9- or 10-membered enediyne core. The anthraquinone-fused enediynes (AFEs) are a subclass of 10-membered enediynes that contain an anthraquinone moiety fused to the enediyne core as exemplified by dynemicins and tiancimycins. A conserved iterative type I polyketide synthase (PKSE) is known to initiate the biosynthesis of all enediyne cores, and evidence has recently been reported to suggest that the anthraquinone moiety also originates from the PKSE product. However, the identity of the PKSE product that is converted to the enediyne core or anthraquinone moiety has not been established. Here, we report the utilization of recombinant E. coli coexpressing various combinations of genes that encode a PKSE and a thioesterase (TE) from either 9- or 10-membered enediyne biosynthetic gene clusters to chemically complement ΔPKSE mutant strains of the producers of dynemicins and tiancimycins. Additionally, 13C-labeling experiments were performed to track the fate of the PKSE/TE product in the ΔPKSE mutants. These studies reveal that 1,3,5,7,9,11,13-pentadecaheptaene is the nascent, discrete product of the PKSE/TE that is converted to the enediyne core. Furthermore, a second molecule of 1,3,5,7,9,11,13-pentadecaheptaene is demonstrated to serve as the precursor of the anthraquinone moiety. The results establish a unified biosynthetic paradigm for AFEs, solidify an unprecedented biosynthetic logic for aromatic polyketides, and have implications for the biosynthesis of not only AFEs but all enediynes.


Asunto(s)
Productos Biológicos , Escherichia coli , Escherichia coli/genética , Antraquinonas/química , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/química , Enediinos/química , Antibióticos Antineoplásicos
3.
Acta Crystallogr F Struct Biol Commun ; 78(Pt 1): 1-7, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34981769

RESUMEN

Dynemicin is an enediyne natural product from Micromonospora chersina ATCC53710. Access to the biosynthetic gene cluster of dynemicin has enabled the in vitro study of gene products within the cluster to decipher their roles in assembling this unique molecule. This paper reports the crystal structure of DynF, the gene product of one of the genes within the biosynthetic gene cluster of dynemicin. DynF is revealed to be a dimeric eight-stranded ß-barrel structure with palmitic acid bound within a cavity. The presence of palmitic acid suggests that DynF may be involved in binding the precursor polyene heptaene, which is central to the synthesis of the ten-membered ring of the enediyne core.


Asunto(s)
Enediinos , Micromonospora , Cristalografía por Rayos X , Enediinos/química , Enediinos/metabolismo , Micromonospora/genética , Micromonospora/metabolismo , Familia de Multigenes
4.
J Am Chem Soc ; 143(46): 19425-19437, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34767710

RESUMEN

Muraymycins are peptidyl nucleoside antibiotics that contain two Cß-modified amino acids, (2S,3S)-capreomycidine and (2S,3S)-ß-OH-Leu. The former is also a component of chymostatins, which are aldehyde-containing peptidic protease inhibitors that─like muraymycin─are derived from nonribosomal peptide synthetases (NRPSs). Using feeding experiments and in vitro characterization of 12 recombinant proteins, the biosynthetic mechanism for both nonproteinogenic amino acids is now defined. The formation of (2S,3S)-capreomycidine is shown to involve an FAD-dependent dehydrogenase:cyclase that requires an NRPS-bound pathway intermediate as a substrate. This cryptic dehydrogenation strategy is both temporally and mechanistically distinct in comparison to the biosynthesis of other capreomycidine diastereomers, which has previously been shown to proceed by Cß-hydroxylation of free l-Arg catalyzed by a member of the nonheme Fe2+- and α-ketoglutarate (αKG)-dependent dioxygenase family and (eventually) a dehydration-mediated cyclization process catalyzed by a distinct enzyme(s). Contrary to our initial expectation, the sole nonheme Fe2+- and αKG-dependent dioxygenase candidate Mur15 encoded within the muraymycin gene cluster is instead demonstrated to catalyze specific Cß hydroxylation of the Leu residue to generate (2S,3S)-ß-OH-Leu that is found in most muraymycin congeners. Importantly, and in contrast to known l-Arg-Cß-hydroxylases, the Mur15-catalyzed reaction occurs after the NRPS-mediated assembly of the peptide scaffold. This late-stage functionalization affords the opportunity to exploit Mur15 as a biocatalyst, proof of concept of which is provided.


Asunto(s)
Arginina/metabolismo , Productos Biológicos/metabolismo , Leucina/metabolismo , Péptido Sintasas/metabolismo , Péptidos/metabolismo , Arginina/química , Productos Biológicos/química , Leucina/química , Estructura Molecular , Péptido Sintasas/química , Péptidos/química
5.
ACS Chem Biol ; 16(12): 2816-2824, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34763417

RESUMEN

We report the identification of the ter gene cluster responsible for the formation of the p-terphenyl derivatives terfestatins B and C and echoside B from the Appalachian Streptomyces strain RM-5-8. We characterize the function of TerB/C, catalysts that work together as a dual enzyme system in the biosynthesis of natural terphenyls. TerB acts as a reductase and TerC as a dehydratase to enable the conversion of polyporic acid to a terphenyl triol intermediate. X-ray crystallography of the apo and substrate-bound forms for both enzymes provides additional mechanistic insights. Validation of the TerC structural model via mutagenesis highlights a critical role of arginine 143 and aspartate 173 in catalysis. Cumulatively, this work highlights a set of enzymes acting in harmony to control and direct reactive intermediates and advances fundamental understanding of the previously unresolved early steps in terphenyl biosynthesis.


Asunto(s)
Hidroliasas/metabolismo , Oxidorreductasas/metabolismo , Compuestos de Terfenilo/química , Secuencia de Aminoácidos , Arginina/química , Ácido Aspártico/química , Vías Biosintéticas , Catálisis , Cristalografía por Rayos X , Escherichia coli/metabolismo , Modelos Moleculares , Unión Proteica , Streptomyces/metabolismo , Relación Estructura-Actividad
6.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 10): 328-333, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34605436

RESUMEN

The 1.5 Šresolution crystal structure of DynU16, a protein identified in the dynemicin-biosynthetic gene cluster, is reported. The structure adopts a di-domain helix-grip fold with a uniquely positioned open cavity connecting the domains. The elongated dimensions of the cavity appear to be compatible with the geometry of a linear polyene, suggesting the involvement of DynU16 in the upstream steps of dynemicin biosynthesis.


Asunto(s)
Antraquinonas/metabolismo , Antibacterianos/biosíntesis , Enediinos/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Modelos Moleculares , Familia de Multigenes , Conformación Proteica
7.
Proteins ; 89(1): 132-137, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32852843

RESUMEN

Natural products and natural product-derived compounds have been widely used for pharmaceuticals for many years, and the search for new natural products that may have interesting activity is ongoing. Abyssomicins are natural product molecules that have antibiotic activity via inhibition of the folate synthesis pathway in microbiota. These compounds also appear to undergo a required [4 + 2] cycloaddition in their biosynthetic pathway. Here we report the structure of an flavin adenine dinucleotide-dependent reductase, AbsH3, from the biosynthetic gene cluster of novel abyssomicins found in Streptomyces sp. LC-6-2.


Asunto(s)
Productos Biológicos , Streptomyces , Productos Biológicos/metabolismo , Vías Biosintéticas , Flavina-Adenina Dinucleótido/metabolismo , Oxidorreductasas/genética , Oxidorreductasas/metabolismo , Streptomyces/genética
8.
J Med Chem ; 63(22): 14067-14086, 2020 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-33191745

RESUMEN

Mithramycin A (MTM) inhibits the oncogenic transcription factor EWS-FLI1 in Ewing sarcoma, but poor pharmacokinetics (PK) and toxicity limit its clinical use. To address this limitation, we report an efficient MTM 2'-oxime (MTMox) conjugation strategy for rapid MTM diversification. Comparative cytotoxicity assays of 41 MTMox analogues using E-twenty-six (ETS) fusion-dependent and ETS fusion-independent cancer cell lines revealed improved ETS fusion-independent/dependent selectivity indices for select 2'-conjugated analogues as compared to MTM. Luciferase-based reporter assays demonstrated target engagement at low nM concentrations, and molecular assays revealed that analogues inhibit the transcriptional activity of EWS-FLI1. These in vitro screens identified MTMox32E (a Phe-Trp dipeptide-based 2'-conjugate) for in vivo testing. Relative to MTM, MTMox32E displayed an 11-fold increase in plasma exposure and improved efficacy in an Ewing sarcoma xenograft. Importantly, these studies are the first to point to simple C3 aliphatic side-chain modification of MTM as an effective strategy to improve PK.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Antibióticos Antineoplásicos/farmacocinética , Neoplasias Óseas/tratamiento farmacológico , Oximas/química , Plicamicina/química , Sarcoma de Ewing/tratamiento farmacológico , Animales , Antibióticos Antineoplásicos/química , Apoptosis , Neoplasias Óseas/patología , Proliferación Celular , Femenino , Humanos , Ratones , Ratones SCID , Sarcoma de Ewing/patología , Distribución Tisular , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Nat Chem Biol ; 16(8): 904-911, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32483377

RESUMEN

Several nucleoside antibiotics are structurally characterized by a 5″-amino-5″-deoxyribose (ADR) appended via a glycosidic bond to a high-carbon sugar nucleoside (5'S,6'S)-5'-C-glycyluridine (GlyU). GlyU is further modified with an N-alkylamine linker, the biosynthetic origin of which has yet to be established. By using a combination of feeding experiments with isotopically labeled precursors and characterization of recombinant proteins from multiple pathways, the biosynthetic mechanism for N-alkylamine installation for ADR-GlyU-containing nucleoside antibiotics has been uncovered. The data reveal S-adenosyl-L-methionine (AdoMet) as the direct precursor of the N-alkylamine, but, unlike conventional AdoMet- or decarboxylated AdoMet-dependent alkyltransferases, the reaction is catalyzed by a pyridoxal-5'-phosphate-dependent aminobutyryltransferase (ABTase) using a stepwise γ-replacement mechanism that couples γ-elimination of AdoMet with aza-γ-addition onto the disaccharide alkyl acceptor. In addition to using a conceptually different strategy for AdoMet-dependent alkylation, the newly discovered ABTases require a phosphorylated disaccharide alkyl acceptor, revealing a cryptic intermediate in the biosynthetic pathway.


Asunto(s)
Antibacterianos/química , Fosfato de Piridoxal/química , Alquilación/fisiología , Antibacterianos/farmacología , Fenómenos Bioquímicos , Metionina/metabolismo , Nucleósidos/química , Fosfatos , Fosforilación , Proteínas Recombinantes/metabolismo , S-Adenosilmetionina/química
10.
J Am Chem Soc ; 142(20): 9389-9395, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32330028

RESUMEN

An efficient divergent synthetic strategy that leverages the natural product spectinomycin to access uniquely functionalized monosaccharides is described. Stereoselective 2'- and 3'-reduction of key spectinomycin-derived intermediates enabled facile access to all eight possible 2,3-stereoisomers of 4,6-dideoxyhexoses as well as representative 3,4,6-trideoxysugars and 3,4,6-trideoxy-3-aminohexoses. In addition, the method was applied to the synthesis of two functionalized sugars commonly associated with macrolide antibiotics-the 3-O-alkyl-4,6-dideoxysugar d-chalcose and the 3-N-alkyl-3,4,6-trideoxysugar d-desosamine.


Asunto(s)
Desoxiazúcares/síntesis química , Desoxiazúcares/química , Conformación Molecular
11.
J Nat Prod ; 82(12): 3469-3476, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31833370

RESUMEN

We report the isolation and characterization of three new nybomycins (nybomycins B-D, 1-3) and six known compounds (nybomycin, 4; deoxynyboquinone, 5; α-rubromycin, 6; ß-rubromycin, 7; γ-rubromycin, 8; and [2α(1E,3E),4ß]-2-(1,3-pentadienyl)-4-piperidinol, 9) from the Rock Creek (McCreary County, KY) underground coal mine acid reclamation site isolate Streptomyces sp. AD-3-6. Nybomycin D (3) and deoxynyboquinone (5) displayed moderate (3) to potent (5) cancer cell line cytotoxicity and displayed weak to moderate anti-Gram-(+) bacterial activity, whereas rubromycins 6-8 displayed little to no cancer cell line cytotoxicity but moderate to potent anti-Gram-(+) bacterial and antifungal activity. Assessment of the impact of 3 or 5 cancer cell line treatment on 4E-BP1 phosphorylation, a predictive marker of ROS-mediated control of cap-dependent translation, also revealed deoxynyboquinone (5)-mediated downstream inhibition of 4E-BP1p. Evaluation of 1-9 in a recently established axolotl embryo tail regeneration assay also highlighted the prototypical telomerase inhibitor γ-rubromycin (8) as a new inhibitor of tail regeneration. Cumulatively, this work highlights an alternative nybomycin production strain, a small set of new nybomycin metabolites, and previously unknown functions of rubromycins (antifungal activity and inhibition of tail regeneration) and also provides a basis for revision of the previously proposed nybomycin biosynthetic pathway.


Asunto(s)
Streptomyces/metabolismo , Antibacterianos/química , Antibacterianos/farmacología , Antifúngicos/química , Antifúngicos/farmacología , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Bacterias Grampositivas/efectos de los fármacos , Humanos , Estructura Molecular , Quinolonas/química , Quinolonas/metabolismo , Quinolonas/farmacología , Análisis Espectral/métodos
12.
Chem Sci ; 10(32): 7641-7648, 2019 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-31583069

RESUMEN

A divergent modular strategy for the enantioselective total synthesis of 12 naturally-occurring griseusin type pyranonaphthoquinones and 8 structurally-similar analogues is described. Key synthetic highlights include Cu-catalyzed enantioselective boration-hydroxylation and hydroxyl-directed C-H olefination to afford the central pharmacophore followed by epoxidation-cyclization and maturation via diastereoselective reduction and regioselective acetylation. Structural revision of griseusin D and absolute structural assignment of 2a,8a-epoxy-epi-4'-deacetyl griseusin B are also reported. Subsequent mechanistic studies establish, for the first time, griseusins as potent inhibitors of peroxiredoxin 1 (Prx1) and glutaredoxin 3 (Grx3). Biological evaluation, including comparative cancer cell line cytotoxicity and axolotl embryo tail inhibition studies, highlights the potential of griseusins as potent molecular probes and/or early stage leads in cancer and regenerative biology.

13.
J Med Chem ; 62(21): 9947-9960, 2019 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-31580658

RESUMEN

Pathogenic bacteria scavenge ferric iron from the host for survival and proliferation using small-molecular chelators, siderophores. Here, we introduce and assess the gallium(III) complex of ciprofloxacin-functionalized desferrichrome (D2) as a potential therapeutic for bacterial infection using an in vitro assay and radiochemical, tracer-based approach. Ga-D2 exhibits a minimum inhibitory concentration of 0.23 µM in Escherichia coli, in line with the parent fluoroquinolone antibiotic. Competitive and mutant strain assays show that Ga-D2 relies on FhuA-mediated transport for internalization. Ga-D2 is potent against Pseudomonas aeruginosa (3.8 µM), Staphylococcus aureus (0.94 µM), and Klebsiella pneumoniae (12.5 µM), while Fe-D2 is inactive in these strains. Radiochemical experiments with E. coli reveal that 67Ga-D2 is taken up more efficiently than 67Ga-citrate. In naive mice, 67Ga-D2 clears renally and is excreted 13% intact in the urine. These pharmacokinetic and bacterial growth inhibitory properties qualify Ga-D2 for future investigations as a diagnosis and treatment tool for infection.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Ciprofloxacina/química , Ciprofloxacina/farmacología , Galio/química , Sideróforos/química , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Radioisótopos de Galio/química , Hierro/química , Radioquímica
14.
J Nat Prod ; 82(6): 1686-1693, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31117525

RESUMEN

The structures and bioactivities of three unprecedented fused 5-hydroxyquinoxaline/alpha-keto acid amino acid metabolites (baraphenazines A-C, 1-3), two unique diastaphenazine-type metabolites (baraphenazines D and E, 4 and 5) and two new phenazinolin-type (baraphenazines F and G, 6 and 7) metabolites from the Himalayan isolate Streptomyces sp. PU-10A are reported. This study highlights the first reported bacterial strain capable of producing diastaphenazine-type, phenazinolin-type, and izumiphenazine A-type metabolites and presents a unique opportunity for the future biosynthetic interrogation of late-stage phenazine-based metabolite maturation.


Asunto(s)
Antibacterianos/metabolismo , Fenazinas/metabolismo , Quinoxalinas/química , Streptomyces/química , Antibacterianos/química , Estructura Molecular , Fenazinas/química
16.
Molecules ; 24(3)2019 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-30691073

RESUMEN

Mycobacterium tuberculosis (Mtb) has recently surpassed HIV/AIDS as the leading cause of death by a single infectious agent. The standard therapeutic regimen against tuberculosis (TB) remains a long, expensive process involving a multidrug regimen, and the prominence of multidrug-resistant (MDR), extensively drug-resistant (XDR), and totally drug-resistant (TDR) strains continues to impede treatment success. An underexplored class of natural products-the capuramycin-type nucleoside antibiotics-have been shown to have potent anti-TB activity by inhibiting bacterial translocase I, a ubiquitous and essential enzyme that functions in peptidoglycan biosynthesis. The present review discusses current literature concerning the biosynthesis and chemical synthesis of capuramycin and analogs, seeking to highlight the potential of the capuramycin scaffold as a favorable anti-TB therapeutic that warrants further development.


Asunto(s)
Aminoglicósidos/biosíntesis , Aminoglicósidos/síntesis química , Antituberculosos/síntesis química , Aminoglicósidos/farmacología , Antituberculosos/metabolismo , Antituberculosos/farmacología , Bacterias/genética , Bacterias/metabolismo , Biocatálisis , Productos Biológicos/síntesis química , Productos Biológicos/metabolismo , Productos Biológicos/farmacología , Descubrimiento de Drogas , Humanos , Redes y Vías Metabólicas , Familia de Multigenes , Mycobacterium tuberculosis/efectos de los fármacos , Relación Estructura-Actividad
17.
CNS Neurosci Ther ; 25(5): 591-600, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30677254

RESUMEN

INTRODUCTION: Azithromycin (AZM) and other macrolide antibiotics are applied as immunomodulatory treatments for CNS disorders. The immunomodulatory and antibiotic properties of AZM are purportedly independent. AIMS: To improve the efficacy and reduce antibiotic resistance risk of AZM-based therapies, we evaluated the immunomodulatory and neuroprotective properties of novel AZM derivatives. We semisynthetically prepared derivatives by altering sugar moieties established as important for inhibiting bacterial protein synthesis. Bone marrow-derived macrophages (BMDMs) were stimulated in vitro with proinflammatory, M1, stimuli (LPS + INF-gamma) with and without derivative costimulation. Pro- and anti-inflammatory cytokine production, IL-12 and IL-10, respectively, was quantified using ELISA. Neuron culture treatment with BMDM supernatant was used to assess derivative neuroprotective potential. RESULTS: Azithromycin and some derivatives increased IL-10 and reduced IL-12 production of M1 macrophages. IL-10/IL-12 cytokine shifts closely correlated with the ability of AZM and derivatives to mitigate macrophage neurotoxicity. CONCLUSIONS: Sugar moieties that bind bacterial ribosomal complexes can be modified in a manner that retains AZM immunomodulation and neuroprotection. Since the effects of BMDMs in vitro are predictive of CNS macrophage responses, our results open new therapeutic avenues for managing maladaptive CNS inflammation and support utilization of IL-10/12 cytokine profiles as indicators of macrophage polarization and neurotoxicity.


Asunto(s)
Azitromicina/análogos & derivados , Inflamación/tratamiento farmacológico , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Animales , Antibacterianos/química , Antibacterianos/farmacología , Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Azitromicina/química , Azitromicina/farmacología , Línea Celular Tumoral , Inflamación/inmunología , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Macrófagos/inmunología , Ratones Endogámicos C57BL , Neuronas/fisiología
18.
Artículo en Inglés | MEDLINE | ID: mdl-29735559

RESUMEN

Muraymycins are antibacterial natural products from Streptomyces spp. that inhibit translocase I (MraY), which is involved in cell wall biosynthesis. Structurally, muraymycins consist of a 5'-C-glycyluridine (GlyU) appended to a 5″-amino-5″-deoxyribose (ADR), forming a disaccharide core that is found in several peptidyl nucleoside inhibitors of MraY. For muraymycins, the GlyU-ADR disaccharide is further modified with an aminopropyl-linked peptide to generate the simplest structures, annotated as the muraymycin D series. Two enzymes encoded in the muraymycin biosynthetic gene cluster, Mur29 and Mur28, were functionally assigned in vitro as a Mg·ATP-dependent nucleotidyltransferase and a Mg·ATP-dependent phosphotransferase, respectively, both modifying the 3″-OH of the disaccharide. Biochemical characterization revealed that both enzymes can utilize several nucleotide donors as cosubstrates and the acceptor substrate muraymycin also behaves as an inhibitor. Single-substrate kinetic analyses revealed that Mur28 preferentially phosphorylates a synthetic GlyU-ADR disaccharide, a hypothetical biosynthetic precursor of muraymycins, while Mur29 preferentially adenylates the D series of muraymycins. The adenylated or phosphorylated products have significantly reduced (170-fold and 51-fold, respectively) MraY inhibitory activities and reduced antibacterial activities, compared with the respective unmodified muraymycins. The results are consistent with Mur29-catalyzed adenylation and Mur28-catalyzed phosphorylation serving as complementary self-resistance mechanisms, with a distinct temporal order during muraymycin biosynthesis.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Nucleósidos/biosíntesis , Nucleósidos/química , Nucleotidiltransferasas/química , Péptidos/química , Fosfotransferasas/química , Streptomyces/metabolismo , Transferasas/antagonistas & inhibidores , Antibacterianos/biosíntesis , Nucleótidos/biosíntesis , Nucleotidiltransferasas/genética , Fosforilación , Fosfotransferasas/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)
19.
J Org Chem ; 83(13): 7239-7249, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29768920

RESUMEN

Muraymycins belong to a family of nucleoside antibiotics that have a distinctive disaccharide core consisting of 5-amino-5-deoxyribofuranose (ADR) attached to 6'- N-alkyl-5'- C-glycyluridine (GlyU). Here, we functionally assign and characterize six enzymes from the muraymycin biosynthetic pathway involved in the core assembly that starts from uridine monophosphate (UMP). The biosynthesis is initiated by Mur16, a nonheme Fe(II)- and α-ketoglutarate-dependent dioxygenase, followed by four transferase enzymes: Mur17, a pyridoxal-5'-phosphate (PLP)-dependent transaldolase; Mur20, an aminotransferase; Mur26, a pyrimidine phosphorylase; and Mur18, a nucleotidylyltransferase. The pathway culminates in glycosidic bond formation in a reaction catalyzed by an additional transferase enzyme, Mur19, a ribosyltransferase. Analysis of the biochemical properties revealed several noteworthy discoveries including that (i) Mur16 and downstream enzymes can also process 2'-deoxy-UMP to generate a 2-deoxy-ADR, which is consistent with the structure of some muraymycin congeners; (ii) Mur20 prefers l-Tyr as the amino donor source; (iii) Mur18 activity absolutely depends on the amine functionality of the ADR precursor consistent with the nucleotidyltransfer reaction occurring after the Mur20-catalyzed aminotransfer reaction; and (iv) the bona fide sugar acceptor for Mur19 is (5' S,6' S)-GlyU, suggesting that ribosyltransfer occurs prior to N-alkylation of GlyU. Finally, a one-pot, six-enzyme reaction was utilized to generate the ADR-GlyU disaccharide core starting from UMP.


Asunto(s)
Antibacterianos/metabolismo , Glicina/metabolismo , Péptidos/metabolismo , Ribosa/metabolismo , Uridina/metabolismo , Especificidad por Sustrato
20.
J Nat Prod ; 81(4): 942-948, 2018 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-29553733

RESUMEN

Muraymycins are nucleoside antibiotics isolated from Streptomyces sp. NRRL 30471 and several mutant strains thereof that were generated by random, chemical mutagenesis. Reinvestigation of two mutant strains using new media conditions led to the isolation of three new muraymycin congeners, named B8, B9, and C6 (1-3), as well as a known muraymycin, C1. Structures of the compounds were elucidated by HRMS and 1D and 2D NMR spectroscopic analyses. Complete 2D NMR assignments for the known muraymycin C1 are also provided for the first time. Compounds 1 and 2, which differ from other muraymycins by having an elongated, terminally branched fatty acid side chain, had picomolar IC50 values against Staphylococcus aureus and Aquifex aeolicus MraY and showed good antibacterial activity against S. aureus (MIC = 2 and 6 µg/mL, respectively) and Escherichia coli Δ tolC (MIC = 4 and 2 µg/mL, respectively). Compound 3, which is characterized by an N-acetyl modification of the primary amine of the dissacharide core that is shared among nearly all of the reported muraymycin congeners, greatly reduced its inhibitory and antibacterial activity compared to nonacylated muraymycin C1, which possibly indicates this modification is used for self-resistance.


Asunto(s)
Antibacterianos/química , Nucleósidos/química , Streptomyces/química , Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Nucleósidos/farmacología , Staphylococcus aureus/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...