Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Med Health Care Philos ; 25(2): 179-190, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35039972

RESUMEN

With the rapidly expanding catalogue of scientific publications, especially within the Biomedical Sciences field, it is becoming increasingly difficult for researchers to search for, read or even interpret emerging scientific findings. PubMed, just one of the current biomedical data repositories, comprises over 33 million citations for biomedical research, and over 2500 publications are added each day. To further strengthen the impact biomedical research, we suggest that there should be more synergy between publications and machines. By bringing machines into the realm of research and publication, we can greatly augment the assessment, investigation and cataloging of the biomedical literary corpus. The effective application of machine-based manuscript assessment and interpretation is now crucial, and potentially stands as the most effective way for researchers to comprehend and process the tsunami of biomedical data and literature. Many biomedical manuscripts are currently published online in poorly searchable document types, with figures and data presented in formats that are partially inaccessible to machine-based approaches. The structure and format of biomedical manuscripts should be adapted to facilitate machine-assisted interrogation of this important literary corpus. In this context, it is important to embrace the concept that biomedical scientists should also write manuscripts that can be read by machines. It is likely that an enhanced human-machine synergy in reading biomedical publications will greatly enhance biomedical data retrieval and reveal novel insights into complex datasets.


Asunto(s)
Investigación Biomédica , Almacenamiento y Recuperación de la Información , Humanos , Publicaciones
2.
Tissue Eng Part B Rev ; 28(3): 506-516, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-33878935

RESUMEN

The cornea is an important barrier to consider when developing ophthalmic formulations, but proper modeling of this multilayered tissue remains a challenge. This is due to the varying properties associated with each layer in addition to the dynamics of the tear film. Hence, the most representative models to date rely on animals. Animal models, however, differ from humans in several aspects and are subject to ethical limitations. Consequently, in vitro approaches are being developed to address these issues. This review focuses on the barrier properties of the cornea and evaluates the most advanced three-dimensional cultures of human corneal equivalents in literature. Their application potential is subsequently assessed and discussed in the context of preclinical testing along with our perspective toward the future. Impact statement Most ocular drugs are applied topically, with the transcorneal pathway as the main administration route. Animal corneas are currently the only advanced models available, contributing to the drug attrition rate. Anatomical and physiological interspecies differences might account for a poor translatability of preclinical results to clinical trials, urging researchers to devise better corneal equivalents. This review elaborates on the emerging generation of three-dimensional in vitro models, which comprises spheroids, organoids, and organs-on-chips, which can serve as a stepping stone for advancements in this field.


Asunto(s)
Córnea , Animales , Córnea/metabolismo , Humanos , Soluciones Oftálmicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...