Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Data ; 10(1): 716, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37853038

RESUMEN

Trypanosomiasis, a neglected tropical disease (NTD), challenges communities in sub-Saharan Africa and Latin America. The World Health Organization underscores the need for practical, field-adaptable diagnostics and rapid screening tools to address the negative impact of NTDs. While artificial intelligence has shown promising results in disease screening, the lack of curated datasets impedes progress. In response to this challenge, we developed the Tryp dataset, comprising microscopy images of unstained thick blood smears containing the Trypanosoma brucei brucei parasite. The Tryp dataset provides bounding box annotations for tightly enclosed regions containing the parasite for 3,085 positive images, and 93 images collected from negative blood samples. The Tryp dataset represents the largest of its kind. Furthermore, we provide a benchmark on three leading deep learning-based object detection techniques that demonstrate the feasibility of AI for this task. Overall, the availability of the Tryp dataset is expected to facilitate research advancements in diagnostic screening for this disease, which may lead to improved healthcare outcomes for the communities impacted.


Asunto(s)
Trypanosoma brucei brucei , Trypanosoma , Tripanosomiasis Africana , Animales , Humanos , Inteligencia Artificial , Microscopía , Enfermedades Desatendidas , Tripanosomiasis Africana/diagnóstico , Tripanosomiasis Africana/parasitología
2.
Plant Methods ; 19(1): 60, 2023 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-37353846

RESUMEN

Computer vision technology is moving more and more towards a three-dimensional approach, and plant phenotyping is following this trend. However, despite its potential, the complexity of the analysis of 3D representations has been the main bottleneck hindering the wider deployment of 3D plant phenotyping. In this review we provide an overview of typical steps for the processing and analysis of 3D representations of plants, to offer potential users of 3D phenotyping a first gateway into its application, and to stimulate its further development. We focus on plant phenotyping applications where the goal is to measure characteristics of single plants or crop canopies on a small scale in research settings, as opposed to large scale crop monitoring in the field.

3.
BMC Bioinformatics ; 24(1): 167, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37098485

RESUMEN

BACKGROUND: CRISPR-Cas-Docker is a web server for in silico docking experiments with CRISPR RNAs (crRNAs) and Cas proteins. This web server aims at providing experimentalists with the optimal crRNA-Cas pair predicted computationally when prokaryotic genomes have multiple CRISPR arrays and Cas systems, as frequently observed in metagenomic data. RESULTS: CRISPR-Cas-Docker provides two methods to predict the optimal Cas protein given a particular crRNA sequence: a structure-based method (in silico docking) and a sequence-based method (machine learning classification). For the structure-based method, users can either provide experimentally determined 3D structures of these macromolecules or use an integrated pipeline to generate 3D-predicted structures for in silico docking experiments. CONCLUSION: CRISPR-Cas-Docker addresses the need of the CRISPR-Cas community to predict RNA-protein interactions in silico by optimizing multiple stages of computation and evaluation, specifically for CRISPR-Cas systems. CRISPR-Cas-Docker is available at www.crisprcasdocker.org as a web server, and at https://github.com/hshimlab/CRISPR-Cas-Docker as an open-source tool.


Asunto(s)
Sistemas CRISPR-Cas , ARN , ARN/genética , Internet
4.
Biol Direct ; 17(1): 27, 2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36207756

RESUMEN

RNA-protein interactions are crucial for diverse biological processes. In prokaryotes, RNA-protein interactions enable adaptive immunity through CRISPR-Cas systems. These defence systems utilize CRISPR RNA (crRNA) templates acquired from past infections to destroy foreign genetic elements through crRNA-mediated nuclease activities of Cas proteins. Thanks to the programmability and specificity of CRISPR-Cas systems, CRISPR-based antimicrobials have the potential to be repurposed as new types of antibiotics. Unlike traditional antibiotics, these CRISPR-based antimicrobials can be designed to target specific bacteria and minimize detrimental effects on the human microbiome during antibacterial therapy. In this study, we explore the potential of CRISPR-based antimicrobials by optimizing the RNA-protein interactions of crRNAs and Cas13 proteins. CRISPR-Cas13 systems are unique as they degrade specific foreign RNAs using the crRNA template, which leads to non-specific RNase activities and cell cycle arrest. We show that a high proportion of the Cas13 systems have no colocalized CRISPR arrays, and the lack of direct association between crRNAs and Cas proteins may result in suboptimal RNA-protein interactions in the current tools. Here, we investigate the RNA-protein interactions of the Cas13-based systems by curating the validation dataset of Cas13 protein and CRISPR repeat pairs that are experimentally validated to interact, and the candidate dataset of CRISPR repeats that reside on the same genome as the currently known Cas13 proteins. To find optimal CRISPR-Cas13 interactions, we first validate the 3-D structure prediction of crRNAs based on their experimental structures. Next, we test a number of RNA-protein interaction programs to optimize the in silico docking of crRNAs with the Cas13 proteins. From this optimized pipeline, we find a number of candidate crRNAs that have comparable or better in silico docking with the Cas13 proteins of the current tools. This study fully automatizes the in silico optimization of RNA-protein interactions as an efficient preliminary step for designing effective CRISPR-Cas13-based antimicrobials.


Asunto(s)
Sistemas CRISPR-Cas , ARN Bacteriano , Antibacterianos , Bacterias/genética , Humanos , Ribonucleasas/genética , Ribonucleasas/metabolismo
5.
PLoS One ; 17(6): e0269449, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35704628

RESUMEN

Environmental monitoring of microplastics (MP) contamination has become an area of great research interest, given potential hazards associated with human ingestion of MP. In this context, determination of MP concentration is essential. However, cheap, rapid, and accurate quantification of MP remains a challenge to this date. This study proposes a deep learning-based image segmentation method that properly distinguishes fluorescent MP from other elements in a given microscopy image. A total of nine different deep learning models, six of which are based on U-Net, were investigated. These models were trained using at least 20,000 patches sampled from 99 fluorescence microscopy images of MP and their corresponding binary masks. MP-Net, which is derived from U-Net, was found to be the best performing model, exhibiting the highest mean F1-score (0.736) and mean IoU value (0.617). Test-time augmentation (using brightness, contrast, and HSV) was applied to MP-Net for robust learning. However, compared to the results obtained without augmentation, no clear improvement in predictive performance could be observed. Recovery assessment for both spiked and real images showed that, compared to already existing tools for MP quantification, the MP quantities predicted by MP-Net are those closest to the ground truth. This observation suggests that MP-Net allows creating masks that more accurately reflect the quantitative presence of fluorescent MP in microscopy images. Finally, MAP (Microplastics Annotation Package) is introduced, an integrated software environment for automated MP quantification, offering support for MP-Net, already existing MP analysis tools like MP-VAT, manual annotation, and model fine-tuning.


Asunto(s)
Bivalvos , Aprendizaje Profundo , Animales , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Microplásticos , Microscopía Fluorescente , Plásticos
6.
Pharmaceuticals (Basel) ; 15(3)2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35337108

RESUMEN

Protein therapeutics play an important role in controlling the functions and activities of disease-causing proteins in modern medicine. Despite protein therapeutics having several advantages over traditional small-molecule therapeutics, further development has been hindered by drug complexity and delivery issues. However, recent progress in deep learning-based protein structure prediction approaches, such as AlphaFold2, opens new opportunities to exploit the complexity of these macro-biomolecules for highly specialised design to inhibit, regulate or even manipulate specific disease-causing proteins. Anti-CRISPR proteins are small proteins from bacteriophages that counter-defend against the prokaryotic adaptive immunity of CRISPR-Cas systems. They are unique examples of natural protein therapeutics that have been optimized by the host-parasite evolutionary arms race to inhibit a wide variety of host proteins. Here, we show that these anti-CRISPR proteins display diverse inhibition mechanisms through accurate structural prediction and functional analysis. We find that these phage-derived proteins are extremely distinct in structure, some of which have no homologues in the current protein structure domain. Furthermore, we find a novel family of anti-CRISPR proteins which are structurally similar to the recently discovered mechanism of manipulating host proteins through enzymatic activity, rather than through direct inference. Using highly accurate structure prediction, we present a wide variety of protein-manipulating strategies of anti-CRISPR proteins for future protein drug design.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...