Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 8829, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632378

RESUMEN

Over the past 30 years, research on meniscal kinematics has been limited by challenges such as low-resolution imaging and capturing continuous motion from static data. This study aimed to develop a computational knee model that overcomes these limitations and enables the continuous assessment of meniscal dynamics. A high-resolution MRI dataset (n = 11) was acquired in 4 configurations of knee flexion. In each configuration, the menisci were modeled based on the underlying osseous anatomy. Principal Polynomial Shape Analysis (PPSA) was employed for continuous meniscal modeling. Maximal medial anterior horn displacement occurred in 60° of flexion, equaling 6.24 mm posteromedial, while the posterior horn remained relatively stable. At 90° of flexion, the lateral anterior and posterior horn displaced posteromedially, amounting 5.70 mm and 6.51 mm respectively. The maximal observed Average Surface Distance (ASD) equaled 0.70 mm for lateral meniscal modeling in 90° of flexion. Based on our results, a strong relation between meniscal dynamics and tibiofemoral kinematics was confirmed. Expanding on static meniscal modeling and employing PPSA, we derived and validated a standardized and systematic methodological workflow.


Asunto(s)
Articulación de la Rodilla , Meniscos Tibiales , Fenómenos Biomecánicos , Meniscos Tibiales/anatomía & histología , Imagen por Resonancia Magnética , Rango del Movimiento Articular
2.
Front Bioeng Biotechnol ; 12: 1348977, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38515625

RESUMEN

Background: Given the inherent variability in walking speeds encountered in day-to-day activities, understanding the corresponding alterations in ankle biomechanics would provide valuable clinical insights. Therefore, the objective of this study was to examine the influence of different walking speeds on biomechanical parameters, utilizing gait analysis and musculoskeletal modelling. Methods: Twenty healthy volunteers without any lower limb medical history were included in this study. Treadmill-assisted gait-analysis with walking speeds of 0.8 m/s and 1.1 m/s was performed using the Gait Real-time Analysis Interactive Lab (GRAIL®). Collected kinematic data and ground reaction forces were processed via the AnyBody® modeling system to determine ankle kinetics and muscle forces of the lower leg. Data were statistically analyzed using statistical parametric mapping to reveal both spatiotemporal and magnitude significant differences. Results: Significant differences were found for both magnitude and spatiotemporal curves between 0.8 m/s and 1.1 m/s for the ankle flexion (p < 0.001), subtalar force (p < 0.001), ankle joint reaction force and muscles forces of the M. gastrocnemius, M. soleus and M. peroneus longus (α = 0.05). No significant spatiotemporal differences were found between 0.8 m/s and 1.1 m/s for the M. tibialis anterior and posterior. Discussion: A significant impact on ankle joint kinematics and kinetics was observed when comparing walking speeds of 0.8 m/s and 1.1 m/s. The findings of this study underscore the influence of walking speed on the biomechanics of the ankle. Such insights may provide a biomechanical rationale for several therapeutic and preventative strategies for ankle conditions.

3.
Front Bioeng Biotechnol ; 11: 1055860, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36970632

RESUMEN

Background and Objective: As in vivo measurements of knee joint contact forces remain challenging, computational musculoskeletal modeling has been popularized as an encouraging solution for non-invasive estimation of joint mechanical loading. Computational musculoskeletal modeling typically relies on laborious manual segmentation as it requires reliable osseous and soft tissue geometry. To improve on feasibility and accuracy of patient-specific geometry predictions, a generic computational approach that can easily be scaled, morphed and fitted to patient-specific knee joint anatomy is presented. Methods: A personalized prediction algorithm was established to derive soft tissue geometry of the knee, originating solely from skeletal anatomy. Based on a MRI dataset (n = 53), manual identification of soft-tissue anatomy and landmarks served as input for our model by use of geometric morphometrics. Topographic distance maps were generated for cartilage thickness predictions. Meniscal modeling relied on wrapping a triangular geometry with varying height and width from the anterior to the posterior root. Elastic mesh wrapping was applied for ligamentous and patellar tendon path modeling. Leave-one-out validation experiments were conducted for accuracy assessment. Results: The Root Mean Square Error (RMSE) for the cartilage layers of the medial tibial plateau, the lateral tibial plateau, the femur and the patella equaled respectively 0.32 mm (range 0.14-0.48), 0.35 mm (range 0.16-0.53), 0.39 mm (range 0.15-0.80) and 0.75 mm (range 0.16-1.11). Similarly, the RMSE equaled respectively 1.16 mm (range 0.99-1.59), 0.91 mm (0.75-1.33), 2.93 mm (range 1.85-4.66) and 2.04 mm (1.88-3.29), calculated over the course of the anterior cruciate ligament, posterior cruciate ligament, the medial and the lateral meniscus. Conclusion: A methodological workflow is presented for patient-specific, morphological knee joint modeling that avoids laborious segmentation. By allowing to accurately predict personalized geometry this method has the potential for generating large (virtual) sample sizes applicable for biomechanical research and improving personalized, computer-assisted medicine.

4.
Comput Methods Programs Biomed ; 231: 107366, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36720186

RESUMEN

BACKGROUND AND OBJECTIVE: Computer simulations of joint contact mechanics have great merit to improve our current understanding of articular ankle pathology. Owed to its computational simplicity, discrete element analysis (DEA) is an encouraging alternative to finite element analysis (FEA). However, previous DEA models lack subject-specific anatomy and may oversimplify the biomechanics of the ankle. The objective of this study was to develop and validate a personalized DEA framework that permits movement of the fibula and incorporates personalized cartilage thickness as well as ligamentous constraints. METHODS: A linear and non-linear DEA framework, representing cartilage as compressive springs, was established, verified, and validated. Three-dimensional (3D) bony ankle models were constructed from cadaveric lower limb CT scans imaged during application of weight (85 kg) and/or torque (10 Nm). These 3D models were used to generate cartilage thickness and ligament insertion sites based on a previously validated statistical shape model. Ligaments were modelled as non-linear tension-only springs. Validation of contact stress prediction was performed using a simple, axially constrained tibiotalar DEA model against an equivalent FEA model. Validation of ligamentous constraints compared the final position of the ankle mortise to that of the cadaver after application of torque and sequential ligament sectioning. Finally, a combined ligamentous-constraining DEA model was validated for predicted contact stress against an equivalent ligament-constraining FEA model. RESULTS: The linear and non-linear DEA model reproduced a mean articular contact stress within 0.36 MPa and 0.39 MPa of the FEA calculated stress, respectively. With respect to the ligamentous validation, the DEA ligament-balancing algorithm could reproduce the position of the distal fibula within the ankle mortise to within 0.97 mm of the experimental observed distal fibula. When combining the ligament-constraining and contact stress algorithm, DEA was able to reproduce a mean articular contact stress to within 0.50 MPa of the FEA calculated contact stress. CONCLUSION: The DEA framework presented herein offers a computationally efficient alternative to FEA for the prediction of contact stress in the ankle joint, manifesting its potential to enhance the mechanical understanding of articular ankle pathologies on both a patient-specific and population-wide level. The novelty of this model lies in its personalized nature, inclusion of the distal tibiofibular joint and the use of non-linear ligament balancing to maintain the physiological ankle joint articulation.


Asunto(s)
Articulación del Tobillo , Ligamentos , Humanos , Estrés Mecánico , Torque , Peroné
5.
Front Bioeng Biotechnol ; 10: 1042441, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36466354

RESUMEN

Background: To date, the amount of cartilage loss is graded by means of discrete scoring systems on artificially divided regions of interest (ROI). However, optimal statistical comparison between and within populations requires anatomically standardized cartilage thickness assessment. Providing anatomical standardization relying on non-rigid registration, we aim to compare morphotypes of a healthy control cohort and virtual reconstructed twins of end-stage knee OA subjects to assess the shape-related knee OA risk and to evaluate possible correlations between phenotype and location of cartilage loss. Methods: Out of an anonymized dataset provided by the Medacta company (Medacta International SA, Castel S. Pietro, CH), 798 end-stage knee OA cases were extracted. Cartilage wear patterns were observed by computing joint space width. The three-dimensional joint space width data was translated into a two-dimensional pixel image, which served as the input for a principal polynomial autoencoder developed for non-linear encoding of wear patterns. Virtual healthy twin reconstruction enabled the investigation of the morphology-related risk for OA requiring joint arthroplasty. Results: The polynomial autoencoder revealed 4 dominant, orthogonal components, accounting for 94% of variance in the latent feature space. This could be interpreted as medial (54.8%), bicompartmental (25.2%) and lateral (9.1%) wear. Medial wear was subdivided into anteromedial (11.3%) and posteromedial (10.4%) wear. Pre-diseased limb geometry had a positive predictive value of 0.80 in the prediction of OA incidence (r 0.58, p < 0.001). Conclusion: An innovative methodological workflow is presented to correlate cartilage wear patterns with knee joint phenotype and to assess the distinct knee OA risk based on pre-diseased lower limb morphology. Confirming previous research, both alignment and joint geometry are of importance in knee OA disease onset and progression.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA