Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 18099, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872212

RESUMEN

Managed bee species provide essential pollination services that contribute to food security worldwide. However, managed bees face a diverse array of threats and anticipating these, and potential opportunities to reduce risks, is essential for the sustainable management of pollination services. We conducted a horizon scanning exercise with 20 experts from across Europe to identify emerging threats and opportunities for managed bees in European agricultural systems. An initial 63 issues were identified, and this was shortlisted to 21 issues through the horizon scanning process. These ranged from local landscape-level management to geopolitical issues on a continental and global scale across seven broad themes-Pesticides & pollutants, Technology, Management practices, Predators & parasites, Environmental stressors, Crop modification, and Political & trade influences. While we conducted this horizon scan within a European context, the opportunities and threats identified will likely be relevant to other regions. A renewed research and policy focus, especially on the highest-ranking issues, is required to maximise the value of these opportunities and mitigate threats to maintain sustainable and healthy managed bee pollinators within agricultural systems.


Asunto(s)
Productos Agrícolas , Plaguicidas , Abejas , Animales , Agricultura , Polinización , Tecnología
2.
J Insect Physiol ; 150: 104557, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37625783

RESUMEN

Juvenile hormone (JH) regulates developmental and physiological processes in insects. In bumble bees, the hormone acts as a gonadotropin that mediates ovary development, but the exact physiological pathways involved in ovary activation and subsequent egg laying are poorly understood. In this study, we examine how queen hibernation state, caste, and species impact the gonadotropic effect of JH in bumble bee queens through methoprene (JH analogue) application. We extend previous research by assessing queen egg laying and colony initiation, alongside ovary development. Furthermore, we compared sensitivity of workers of both species to the juvenile hormone's gonadotropic effect. In both bumble bee species, the ovaries of hibernated queens were developed five to six days after breaking diapause, regardless of methoprene treatment. By contrast, methoprene did have a stimulatory effect on ovary development in non-hibernated queens. The dose needed to obtain this effect was higher in B. impatiens. Methoprene did not have gonadotropic effects in callow workers of both species. These results indicate that the physiological effect of exogenous methoprene application varies according to species, caste and hibernation status. Interestingly, despite gonadotropic effects in non-hibernated queens, oviposition was not accelerated by JH. This suggests that JH alone is insufficient to induce egg laying and that an additional stimulus, which is naturally present in hibernated queens, is required. Consequently, our findings indicate that other physiological processes, beyond a rise in JH alone, are required for oviposition and colony initiation.

3.
Sci Total Environ ; 833: 155098, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35398139

RESUMEN

Global insect biodiversity declines due to reduced fitness are linked to interactions between environmental stressors. In social insects, inclusive fitness depends on successful mating of reproductives, i.e. males and queens, and efficient collaborative brood care by workers. Therefore, interactive effects between malnutrition and environmental pollution on sperm and feeding glands (hypopharyngeal glands (HPGs)) would provide mechanisms for population declines, unless buffered against due to their fitness relevance. However, while negative effects for bumble bee colony fitness are known, the effects of malnutrition and insecticide exposure singly and in combination on individuals are poorly understood. Here we show, in a fully-crossed laboratory experiment, that malnutrition and insecticide exposure result in neutral or antagonistic interactions for spermatozoa and HPGs of bumble bees, Bombus terrestris, suggesting strong selection to buffer key colony fitness components. No significant effects were observed for mortality and consumption, but significant negative effects were revealed for spermatozoa traits and HPGs. The combined effects on these parameters were not higher than the individual stressor effects, which indicates an antagonistic interaction between both. Despite the clear potential for additive effects, due to the individual stressors impairing muscle quality and neurological control, simultaneous malnutrition and insecticide exposure surprisingly did not reveal an increased impact compared to individual stressors, probably due to key fitness traits being resilient. Our data support that stressor interactions require empirical tests on a case-by-case basis and need to be regarded in context to understand underlying mechanisms and so adequately mitigate the ongoing decline of the entomofauna.


Asunto(s)
Insecticidas , Desnutrición , Animales , Abejas , Insectos , Insecticidas/toxicidad , Masculino , Reproducción , Espermatozoides
4.
Pest Manag Sci ; 78(7): 3051-3060, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35437904

RESUMEN

BACKGROUND: Predatory syrphids are an important functional group due to their potential for providing multiple ecosystem services. Adults feed on nectar and pollen, and can be effective pollinators, while larvae are voracious predators that can reduce aphid pressure. Still, little research has addressed their potential dual function in agroecosystems. In this study, we assessed the potential of two predatory hoverflies, Eupeodes corollae and Sphaerophoria rueppellii, for delivering concurrent pollination and biological control of Chaetospihon fragaefolii in greenhouse strawberries. RESULTS: Both hoverfly species effectively pollinated strawberry flowers of two different varieties ('Elsanta' and 'Sonsation'), resulting in an increase in high-quality marketable fruits, a reduction of fruit deformities, and higher number of seeds per fruit compared to pollinator-excluded fruits. S. ruepellii had a significantly longer flower handling time than E. corollae, which translated to a more efficient pollination expressed as higher seed numbers per fruit after a single flower visit. By contrast, flowers that were open to multiple visits were more effectively pollinated by E. corollae, suggesting that E. corollae is potentially a better cross-pollinator than S. rueppellii. In addition, both hoverfly species suppressed aphid populations in strawberry (var. 'Sonata'), with S. rueppellii and E. corollae reducing aphid populations by 49% and 62%, respectively. CONCLUSION: Predatory syrphids can concurrently contribute to pollination and biological control in strawberry in a greenhouse setting. © 2022 Society of Chemical Industry.


Asunto(s)
Áfidos , Dípteros , Fragaria , Animales , Productos Agrícolas , Ecosistema , Flores , Polinización , Conducta Predatoria
5.
Toxicol Rep ; 9: 36-45, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34987978

RESUMEN

Sexual reproduction is common to almost all multi-cellular organisms and can be compromised by environmental pollution, thereby affecting entire populations. Even though there is consensus that neonicotinoid insecticides can impact non-target animal fertility, their possible impact on male mating success is currently unknown in bees. Here, we show that sublethal exposure to a neonicotinoid significantly reduces both mating success and sperm traits of male bumblebees. Sexually mature male Bombus terrestris exposed to a field-realistic concentration of thiamethoxam (20 ng g-1) or not (controls) were mated with virgin gynes in the laboratory. The results confirm sublethal negative effects of thiamethoxam on sperm quantity and viability. While the latency to mate was reduced, mating success was significantly impaired in thiamethoxam-exposed males by 32% probably due to female choice. Gynes mated by exposed males revealed impaired sperm traits compared to their respective controls, which may lead to severe constraints for colony fitness. Our laboratory findings demonstrate for the first time that neonicotinoid insecticides can negatively affect male mating success in bees. Given that holds true for the field, this provides a plausible mechanism contributing to declines of wild bee populations globally. The widespread prophylactic use of neonicotinoids may therefore have previously overlooked inadvertent anti-aphrodisiac effects on non-target animals, thereby limiting conservation efforts.

6.
Sci Total Environ ; 785: 146955, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-33957580

RESUMEN

Insecticides are contributing to global insect declines, thereby creating demand to understand the mechanisms underlying reduced fitness. In the eusocial Hymenoptera, inclusive fitness depends on successful mating of male sexuals (drones) and efficient collaborative brood care by female workers. Therefore, sublethal insecticide effects on sperm and glands used in larval feeding (hypopharyngeal glands (HPG)) would provide key mechanisms for population declines in eusocial insects. However, while negative impacts for bumblebee colony fitness have been documented, the effects of insecticide exposure on individual physiology are less well understood. Here, we show that field-realistic concentrations (4.5-40 ng ml-1) of the neonicotinoid insecticide thiamethoxam significantly impair Bombus terrestris sperm and HPGs, thereby providing plausible mechanisms underlying bumblebee population decline. In the laboratory, drones and workers were exposed to five thiamethoxam concentrations (4.5 to 1000 ng ml-1). Then, survival, food consumption, body mass, HPG development, sperm quantity and viability were assessed. At all concentrations, drones were more exposed than workers due to higher food consumption. Increased body mass was observed in drones starting at 20 ng ml-1 and in workers at 100 ng ml-1. Furthermore, environmentally realistic concentrations (4.5-40 ng ml-1) did not significantly affect survival or consumption for either sex. However, thiamethoxam exposure significantly negatively affected both sperm viability and HPG development at all tested concentrations. Therefore, the results indicate a trade-off between survival and fitness components, possibly due to costly detoxification. Since sperm and HPG are corner stones of colony fitness, the data offer plausible mechanisms for bumblebee population declines. To adequately mitigate ongoing biodiversity declines for the eusocial insects, this study suggests it is essential to evaluate the impact of insecticides on fitness parameters of both sexuals and workers.


Asunto(s)
Insecticidas , Animales , Abejas , Femenino , Humanos , Insectos , Insecticidas/toxicidad , Masculino , Neonicotinoides/toxicidad , Nitrocompuestos/toxicidad , Reproducción , Espermatozoides , Tiametoxam
7.
Chemosphere ; 273: 128518, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33092828

RESUMEN

Risk assessment studies addressing effects of agrochemicals on bumblebees frequently use microcolonies. These are queenless colonies consisting of workers only in which typically one worker will lay unfertilized male-destined eggs. In the first tier of risk assessment for bees, short-term laboratory experiments (e.g. microcolonies) are used, the results of which will determine whether higher tier (semi-)field experiments are needed. To evaluate the suitability of microcolonies for risk assessment, a direct comparison between different assessment methods for the neonicotinoid pesticides acetamiprid and thiacloprid was made: microcolonies and queenright colonies under short-term laboratory conditions, queenright colonies under long-term laboratory conditions, and queenright colonies under field conditions. Here, we demonstrate that results from microcolonies contradict results from queenright colonies. While thiacloprid negatively impacted gyne production in queenright colonies, it had a positive effect on microcolony size. By contrast, thiacloprid had no significant effect on fitness parameters of queenright colonies under short-term laboratory conditions when mostly workers are produced. These results thus highlight both the need for long term assessments, allowing evaluation of gyne production, and the risk of reaching erroneous conclusions when using microcolonies. The negative effect of thiacloprid on colony fitness was confirmed under field conditions, where thiacloprid affected the production of reproductives, colony weight gain, worker weight, and foraging behaviour. For acetamiprid, a negative trend on colony fitness could only be shown in a field setup. Therefore, field-realistic setups, which allow colonies to forage freely, are most appropriate to assess sublethal effects of pesticides affecting behaviour and learning.


Asunto(s)
Insecticidas , Plaguicidas , Animales , Abejas , Insecticidas/toxicidad , Laboratorios , Masculino , Neonicotinoides/toxicidad , Plaguicidas/toxicidad , Reproducción , Medición de Riesgo
8.
FEMS Microbiol Ecol ; 94(12)2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30285114

RESUMEN

Floral nectar represents an ephemeral habitat that is restricted in time and space to zoophilous flowering vegetation. To survive in these habitats, nectar-inhabiting microorganisms rely on animal vectors to disperse from one flower to the next. However, it remains unclear how nectar yeasts persist when flowers and nectar cease to be present. Here, we tested the hypothesis that hibernating bumblebee queens function as a reservoir for nectar yeasts in the absence of plants or pollinators during winter. Our results show that the nectar yeast, Metschnikowia reukaufii, was present in the gastrointestinal tract of wild bumblebee queens that emerged from hibernation and that it could persist inside the gut of hibernating queens under experimental conditions. However, no evidence for such persistence was found in the case of the second most frequent nectar yeast, M. gruessii. Furthermore, a phylloplane yeast that occasionally inhabits nectar, Rhodotorula mucilaginosa, was able to colonize the gut under experimental conditions. Two bumblebee-associated yeasts, Candida bombi and C. bombiphila, were successfully passed down generations after administration in commercial lab-reared bumblebees. Overall, these results demonstrate that bumblebees could act as a reservoir for nectar yeasts during winter when floral nectar is absent.


Asunto(s)
Abejas/microbiología , Candida/fisiología , Tracto Gastrointestinal/microbiología , Metschnikowia/fisiología , Animales , Ecosistema , Femenino , Flores/microbiología , Estadios del Ciclo de Vida , Néctar de las Plantas/metabolismo , Plantas , Polinización/fisiología , Estaciones del Año
9.
PeerJ ; 5: e3332, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28533978

RESUMEN

In a recent study, Amsalem, Orlova & Grozinger (2015) performed experiments with Bombus impatiens bumblebees to test the hypothesis that saturated cuticular hydrocarbons are evolutionarily conserved signals used to regulate reproductive division of labor in many Hymenopteran social insects. They concluded that the cuticular hydrocarbon pentacosane (C25), previously identified as a queen pheromone in a congeneric bumblebee, does not affect worker reproduction in B. impatiens. Here we discuss some shortcomings of Amsalem et al.'s study that make its conclusions unreliable. In particular, several confounding effects may have affected the results of both experimental manipulations in the study. Additionally, the study's low sample sizes (mean n per treatment = 13.6, range: 4-23) give it low power, not 96-99% power as claimed, such that its conclusions may be false negatives. Inappropriate statistical tests were also used, and our reanalysis found that C25 substantially reduced and delayed worker egg laying in B. impatiens. We review the evidence that cuticular hydrocarbons act as queen pheromones, and offer some recommendations for future queen pheromone experiments.

10.
J Chem Ecol ; 41(12): 1137-47, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26615426

RESUMEN

The parasitoid beetle Metoecus paradoxus frequently parasitizes colonies of the common wasp, Vespula vulgaris. It penetrates a host colony as a larva that attaches itself onto a foraging wasp's body and, once inside the nest, it feeds on a wasp larva inside a brood cell and then pupates. Avoiding detection by the wasp host is crucial when the beetle emerges. Here, we tested whether adult M. paradoxus beetles avoid detection by mimicking the cuticular hydrocarbon profile of their host. The beetles appear to be chemically adapted to their main host species, the common wasp, because they share more hydrocarbon compounds with it than they do with the related German wasp, V. germanica. In addition, aggression tests showed that adult beetles were attacked less by common wasp workers than by German wasp workers. Our results further indicated that the host-specific compounds were, at least partially, produced through recycling of the prey's hydrocarbons, and were not acquired through contact with the adult host. Moreover, the chemical profile of the beetles shows overproduction of the wasp queen pheromone, nonacosane (n-C29), suggesting that beetles might mimic the queen's pheromonal bouquet.


Asunto(s)
Escarabajos/fisiología , Hidrocarburos/metabolismo , Avispas/parasitología , Animales , Escarabajos/crecimiento & desarrollo , Femenino , Interacciones Huésped-Parásitos , Hidrocarburos/química , Larva/crecimiento & desarrollo , Larva/parasitología , Larva/fisiología , Masculino
11.
Curr Biol ; 25(12): 1638-40, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25959967

RESUMEN

Eusocial insects exhibit a remarkable reproductive division of labor between queens and largely sterile workers [1, 2]. Recently, it was shown that queens of diverse groups of social insects employ specific, evolutionarily conserved cuticular hydrocarbons to signal their presence and inhibit worker reproduction [3]. Workers also recognize and discriminate between eggs laid by the queen and those laid by workers, with the latter being destroyed by workers in a process known as "policing" [4, 5]. Worker policing represents a classic example of a conflict-reducing mechanism, in which the reproductive monopoly of the queen is maintained through the selective destruction of worker-laid eggs [5, 6]. However, the exact signals used in worker policing have thus far remained elusive [5, 7]. Here, we show that in the common wasp, Vespula vulgaris, the pheromone that signals egg maternity and enables the workers to selectively destroy worker-laid eggs is in fact the same as one of the sterility-inducing queen signals that we identified earlier [3]. These results imply that queen pheromones regulate insect sociality in two distinct and complementary ways, i.e., by signaling the queen's presence and inhibiting worker reproduction, and by facilitating the recognition and policing of worker-laid eggs.


Asunto(s)
Feromonas/fisiología , Avispas/fisiología , Animales , Conducta Animal , Huevos , Femenino , Masculino , Conducta Social
12.
Bioessays ; 37(7): 808-21, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25916998

RESUMEN

Queen pheromones, which signal the presence of a fertile queen and induce daughter workers to remain sterile, are considered to play a key role in regulating the reproductive division of labor of insect societies. Although queen pheromones were long thought to be highly taxon-specific, recent studies have shown that structurally related long-chain hydrocarbons act as conserved queen signals across several independently evolved lineages of social insects. These results imply that social insect queen pheromones are very ancient and likely derived from an ancestral signalling system that was already present in their common solitary ancestors. Based on these new insights, we here review the literature and speculate on what signal precursors social insect queen pheromones may have evolved from. Furthermore, we provide compelling evidence that these pheromones should best be seen as honest signals of fertility as opposed to suppressive agents that chemically sterilize the workers against their own best interests.


Asunto(s)
Hormonas de Insectos/fisiología , Insectos/fisiología , Atractivos Sexuales/fisiología , Animales , Evolución Biológica , Reproducción
13.
PLoS One ; 10(3): e0121358, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25798856

RESUMEN

When invasive species move to new environments they typically experience population bottlenecks that limit the probability that pathogens and parasites are also moved. The invasive species may thus be released from biotic interactions that can be a major source of density-dependent mortality, referred to as enemy release. We examined for evidence of enemy release in populations of the common wasp (Vespula vulgaris), which attains high densities and represents a major threat to biodiversity in its invaded range. Mass spectrometry proteomic methods were used to compare the microbial communities in wasp populations in the native (Belgium and England) and invaded range (Argentina and New Zealand). We found no evidence of enemy release, as the number of microbial taxa was similar in both the introduced and native range. However, some evidence of distinctiveness in the microbial communities was observed between countries. The pathogens observed were similar to a variety of taxa observed in honey bees. These taxa included Nosema, Paenibacillus, and Yersina spp. Genomic methods confirmed a diversity of Nosema spp., Actinobacteria, and the Deformed wing and Kashmir bee viruses. We also analysed published records of bacteria, viruses, nematodes and fungi from both V. vulgaris and the related invader V. germanica. Thirty-three different microorganism taxa have been associated with wasps including Kashmir bee virus and entomophagous fungi such as Aspergillus flavus. There was no evidence that the presence or absence of these microorganisms was dependent on region of wasp samples (i.e. their native or invaded range). Given the similarity of the wasp pathogen fauna to that from honey bees, the lack of enemy release in wasp populations is probably related to spill-over or spill-back from bees and other social insects. Social insects appear to form a reservoir of generalist parasites and pathogens, which makes the management of wasp and bee disease difficult.


Asunto(s)
Ecosistema , Microbiota , Avispas/microbiología , Distribución Animal , Animales , Especies Introducidas , Avispas/fisiología
14.
Science ; 343(6168): 287-90, 2014 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-24436417

RESUMEN

A major evolutionary transition to eusociality with reproductive division of labor between queens and workers has arisen independently at least 10 times in the ants, bees, and wasps. Pheromones produced by queens are thought to play a key role in regulating this complex social system, but their evolutionary history remains unknown. Here, we identify the first sterility-inducing queen pheromones in a wasp, bumblebee, and desert ant and synthesize existing data on compounds that characterize female fecundity in 64 species of social insects. Our results show that queen pheromones are strikingly conserved across at least three independent origins of eusociality, with wasps, ants, and some bees all appearing to use nonvolatile, saturated hydrocarbons to advertise fecundity and/or suppress worker reproduction. These results suggest that queen pheromones evolved from conserved signals of solitary ancestors.


Asunto(s)
Hormigas/fisiología , Abejas/fisiología , Evolución Biológica , Fertilidad/fisiología , Feromonas/fisiología , Avispas/fisiología , Animales , Bioensayo , Femenino , Fertilidad/efectos de los fármacos , Masculino , Feromonas/clasificación , Feromonas/farmacología , Reproducción/efectos de los fármacos , Reproducción/fisiología
15.
Bioessays ; 33(12): 927-37, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21997278

RESUMEN

The study of alternative genetic systems and mixed modes of reproduction, whereby sexual and asexual reproduction is combined within the same lifecycle, is of fundamental importance as they may shed light on classical evolutionary issues, such as the paradox of sex. Recently, several such cases were discovered in social insects. A closer examination of these systems has revealed many amazing facts, including the mixed use of asexual and sexual reproduction for the production of new queens and workers, males that can clone themselves and the routine use of incest without deleterious genetic consequences. In addition, in several species, remarkable cases of asexually reproducing socially parasitic worker lineages have been discovered. The study of these unusual systems promises to provide insight into many basic evolutionary questions, including the maintenance of sex, the expression of sexual conflict and kin conflict and the evolution of cheating in asexual lineages.


Asunto(s)
Hormigas/genética , Abejas/genética , Evolución Biológica , Isópteros/genética , Reproducción Asexuada/genética , Animales , Femenino , Variación Genética , Masculino , Modelos Biológicos , Linaje
16.
Oecologia ; 163(4): 867-74, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20454978

RESUMEN

Permanent colour polymorphisms may be maintained by complex interactions between physiological traits (e.g. immunity) and environmental pressures. In this study we investigate morph specific variation in parasite load and cellular immune response (induced by a Phytohaemagglutinin, PHA injection) in a colour polymorphic population of the Dalmatian wall lizard (Podarcis melisellensis), where adult males have bright white, yellow or orange throats and ventral sides. Orange males have larger heads and can bite harder than the others. To examine seasonal effects, analyses were performed at an early and late stage in the reproductive season (May and September). Infection with mites and ticks did not differ among morphs, but was more severe at the end of the reproductive season. Fewer orange individuals were infected with haemogregarines at the end of the season, but white males were always more infected (higher number of haemogregarines in their blood) than other morphs. White and yellow males showed an increased PHA response towards the end of the season, but PHA response decreased in the orange morph. Finally, across all morphs, a relationship was found between ectoparasite load and PHA response. Our study provides indications of alternative life-history strategies among colour morphs and evidence for an up-regulation of the immune function at the end of the reproductive season.


Asunto(s)
Inmunidad Celular , Lagartos/inmunología , Pigmentación , Polimorfismo Genético , Estaciones del Año , Animales , Lagartos/genética , Lagartos/parasitología , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...