Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 129(7): 076801, 2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36018693

RESUMEN

In the archetypal monolayer semiconductor WSe_{2}, the distinct ordering of spin-polarized valleys (low-energy pockets) in the conduction band allows for studies of not only simple neutral excitons and charged excitons (i.e., trions), but also more complex many-body states that are predicted at higher electron densities. We discuss magneto-optical measurements of electron-rich WSe_{2} monolayers and interpret the spectral lines that emerge at high electron doping as optical transitions of six-body exciton states ("hexcitons") and eight-body exciton states ("oxcitons"). These many-body states emerge when a photoexcited electron-hole pair interacts simultaneously with multiple Fermi seas, each having distinguishable spin and valley quantum numbers. In addition, we explain the relations between dark trions and satellite optical transitions of hexcitons in the photoluminescence spectrum.

2.
Nat Commun ; 12(1): 5455, 2021 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-34526493

RESUMEN

Monolayers of transition metal dichalcogenides are ideal materials to control both spin and valley degrees of freedom either electrically or optically. Nevertheless, optical excitation mostly generates excitons species with inherently short lifetime and spin/valley relaxation time. Here we demonstrate a very efficient spin/valley optical pumping of resident electrons in n-doped WSe2 and WS2 monolayers. We observe that, using a continuous wave laser and appropriate doping and excitation densities, negative trion doublet lines exhibit circular polarization of opposite sign and the photoluminescence intensity of the triplet trion is more than four times larger with circular excitation than with linear excitation. We interpret our results as a consequence of a large dynamic polarization of resident electrons using circular light.

3.
Nat Commun ; 11(1): 618, 2020 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-32001715

RESUMEN

The coupling between spin, charge, and lattice degrees of freedom plays an important role in a wide range of fundamental phenomena. Monolayer semiconducting transitional metal dichalcogenides have emerged as an outstanding platform for studying these coupling effects. Here, we report the observation of multiple valley phonons - phonons with momentum vectors pointing to the corners of the hexagonal Brillouin zone - and the resulting exciton complexes in the monolayer semiconductor WSe2. We find that these valley phonons lead to efficient intervalley scattering of quasi particles in both exciton formation and relaxation. This leads to a series of photoluminescence peaks as valley phonon replicas of dark trions. Using identified valley phonons, we also uncover an intervalley exciton near charge neutrality. Our work not only identifies a number of previously unknown 2D excitonic species, but also shows that monolayer WSe2 is a prime candidate for studying interactions between spin, pseudospin, and zone-edge phonons.

4.
Phys Rev Lett ; 122(21): 217401, 2019 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31283327

RESUMEN

Photoluminescence experiments from monolayer transition-metal dichalcogenides often show that the binding energy of trions is conspicuously similar to the energy of optical phonons. This enigmatic coincidence calls into question whether phonons are involved in the radiative recombination process. We address this problem, unraveling an intriguing optical transition mechanism. Its initial state is a localized charge (electron or hole) and delocalized exciton. The final state is the localized charge, phonon, and photon. In between, the intermediate state of the system is a virtual trion formed when the localized charge captures the exciton through emission of the phonon. We analyze the difference between radiative recombinations that involve real and virtual trions (i.e., with and without a phonon), providing useful ways to distinguish between the two in experiment.

5.
J Phys Condens Matter ; 31(20): 203001, 2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-30763925

RESUMEN

Monolayer transition-metal dichalcogenides (ML-TMDs) offer exciting opportunities to test the manifestations of many-body interactions through changes in the charge density. The two-dimensional character and reduced screening in ML-TMDs lead to the formation of neutral and charged excitons with binding energies orders of magnitude larger than those in conventional bulk semiconductors. Tuning the charge density by a gate voltage leads to profound changes in the optical spectra of excitons in ML-TMDs. On the one hand, the increased screening at large charge densities should result in a blueshift of the exciton spectral lines due to reduction in the binding energy. On the other hand, exchange and correlation effects that shrink the band-gap energy at elevated charge densities (band-gap renormalization) should result in a redshift of the exciton spectral lines. While these competing effects can be captured through various approximations that model long-wavelength charge excitations in the Bethe-Salpeter equation, we show that a novel coupling between excitons and shortwave charge excitations is essential to resolve several experimental puzzles. Unlike ubiquitous and well-studied plasmons, driven by collective oscillations of the background charge density in the long-wavelength limit, we discuss the emergence of shortwave plasmons that originate from the short-range Coulomb interaction through which electrons transition between the [Formula: see text] and [Formula: see text] valleys. The shortwave plasmons have a finite energy-gap because of the removal of spin-degeneracy in both the valence- and conduction-band valleys (a consequence of breaking of inversion symmetry in combination with strong spin-orbit coupling in ML-TMDs). We study the coupling between the shortwave plasmons and the neutral exciton through the self-energy of the latter. We then elucidate how this coupling as well as the spin ordering in the conduction band give rise to an experimentally observed optical sideband in electron-doped W-based MLs, conspicuously absent in electron-doped Mo-based MLs or any hole-doped ML-TMDs. While the focus of this review is on the optical manifestations of many-body effects in ML-TMDs, a systematic description of the dynamical screening and its various approximations allow one to revisit other phenomena, such as nonequilibrium transport or superconducting pairing, where the use of the Bethe-Salpeter equation or the emergence of shortwave plasmons can play an important role.

6.
Phys Rev Lett ; 116(10): 106601, 2016 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-27015500

RESUMEN

Spin manipulation is one of the most critical challenges to realize spin-based logic devices and spintronic circuits. Graphene has been heralded as an ideal material to achieve spin manipulation, but so far new paradigms and demonstrators are limited. Here we show that certain impurities such as fluorine adatoms, which locally break sublattice symmetry without the formation of strong magnetic moment, could result in a remarkable variability of spin transport characteristics. The impurity resonance level is found to be associated with a long-range sublattice pseudospin polarization, which by locally decoupling spin and pseudospin dynamics provokes a huge spin lifetime electron-hole asymmetry. In the dilute impurity limit, spin lifetimes could be tuned electrostatically from 100 ps to several nanoseconds, providing a protocol to chemically engineer an unprecedented spin device functionality.

7.
Phys Rev Lett ; 113(24): 246603, 2014 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-25541791

RESUMEN

We report an intriguing transition from the quantum spin Hall phase to the spin Hall effect upon segregation of thallium adatoms adsorbed onto a graphene surface. Landauer-Büttiker and Kubo-Greenwood simulations are used to access both edge and bulk transport physics in disordered thallium-functionalized graphene systems of realistic sizes. Our findings not only quantify the detrimental effects of adatom clustering in the formation of the topological state, but also provide evidence for the emergence of spin accumulation at opposite sample edges driven by spin-dependent scattering induced by thallium islands, which eventually results in a minimum bulk conductivity ∼4e²/h, insensitive to localization effects.

8.
Adv Mater ; 26(30): 5079-94, 2014 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-24903153

RESUMEN

Graphene has attracted significant interest both for exploring fundamental science and for a wide range of technological applications. Chemical vapor deposition (CVD) is currently the only working approach to grow graphene at wafer scale, which is required for industrial applications. Unfortunately, CVD graphene is intrinsically polycrystalline, with pristine graphene grains stitched together by disordered grain boundaries, which can be either a blessing or a curse. On the one hand, grain boundaries are expected to degrade the electrical and mechanical properties of polycrystalline graphene, rendering the material undesirable for many applications. On the other hand, they exhibit an increased chemical reactivity, suggesting their potential application to sensing or as templates for synthesis of one-dimensional materials. Therefore, it is important to gain a deeper understanding of the structure and properties of graphene grain boundaries. Here, we review experimental progress on identification and electrical and chemical characterization of graphene grain boundaries. We use numerical simulations and transport measurements to demonstrate that electrical properties and chemical modification of graphene grain boundaries are strongly correlated. This not only provides guidelines for the improvement of graphene devices, but also opens a new research area of engineering graphene grain boundaries for highly sensitive electro-biochemical devices.

9.
Phys Rev Lett ; 110(19): 196601, 2013 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-23705730

RESUMEN

The role of defect-induced zero-energy modes on charge transport in graphene is investigated using Kubo and Landauer transport calculations. By tuning the density of random distributions of monovacancies either equally populating the two sublattices or exclusively located on a single sublattice, all conduction regimes are covered from direct tunneling through evanescent modes to mesoscopic transport in bulk disordered graphene. Depending on the transport measurement geometry, defect density, and broken sublattice symmetry, the Dirac-point conductivity is either exceptionally robust against disorder (supermetallic state) or suppressed through a gap opening or by algebraic localization of zero-energy modes, whereas weak localization and the Anderson insulating regime are obtained for higher energies. These findings clarify the contribution of zero-energy modes to transport at the Dirac point, hitherto controversial.

10.
Nano Lett ; 13(4): 1730-5, 2013 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-23448361

RESUMEN

Polycrystalline graphene is a patchwork of coalescing graphene grains of varying lattice orientations and size, resulting from the chemical vapor deposition (CVD) growth at random nucleation sites on metallic substrates. The morphology of grain boundaries has become an important topic given its fundamental role in limiting the mobility of charge carriers in polycrystalline graphene, as compared to mechanically exfoliated samples. Here we report new insights to the current understanding of charge transport in polycrystalline geometries. We created realistic models of large CVD-grown graphene samples and then computed the corresponding charge carrier mobilities as a function of the average grain size and the coalescence quality between the grains. Our results reveal a remarkably simple scaling law for the mean free path and conductivity, correlated to atomic-scale charge density fluctuations along grain boundaries.


Asunto(s)
Cristalización , Grafito/química , Nanoestructuras/química , Ensayo de Materiales , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA