Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur Phys J E Soft Matter ; 42(7): 86, 2019 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-31289962

RESUMEN

This paper describes the European Space Agency (ESA) experiments devoted to study thermodiffusion of fluid mixtures in microgravity environment, where sedimentation and convection do not affect the mass flow induced by the Soret effect. First, the experiments performed on binary mixtures in the IVIDIL and GRADFLEX experiments are described. Then, further experiments on ternary mixtures and complex fluids performed in DCMIX and planned to be performed in the context of the NEUF-DIX project are presented. Finally, multi-component mixtures studied in the SCCO project are detailed.

2.
Eur Phys J E Soft Matter ; 38(4): 30, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25916233

RESUMEN

With the aim of providing reliable benchmark values, we have measured the Soret, thermodiffusion and molecular diffusion coefficients for the ternary mixture formed by 1,2,3,4-tetrahydronaphthalene, isobutylbenzene and n-dodecane for a mass fraction of 0.8-0.1-0.1 and at a temperature of 25°C. The experimental techniques used by the six participating laboratories are Optical Digital Interferometry, Taylor Dispersion technique, Open Ended Capillary, Optical Beam Deflection, Thermogravitational technique and Sliding Symmetric Tubes technique in ground conditions and Selectable Optical Diagnostic Instrument (SODI) in microgravity conditions. The measurements obtained in the SODI installation have been analyzed independently by four laboratories. Benchmark values are proposed for the thermodiffusion and Soret coefficients and for the eigenvalues of the diffusion matrix in ground conditions, and for Soret coefficients in microgravity conditions.

3.
Rev Sci Instrum ; 82(12): 126105, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22225260

RESUMEN

A thermodiffusion cell is developed for performing Soret experiments on binary mixtures at high pressure and in the presence of a porous medium. The cell is validated by performing experiments at atmospheric pressure. The experiments are performed by applying different temperature gradients to binary mixtures in order to determine their thermal contrast factor. These measurements provide a first demonstration of the good reproducibility of this kind of measurements upon calibration.

5.
Phys Rev A ; 41(12): 6727-6731, 1990 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-9903086
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA