Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38794537

RESUMEN

Antibacterial hydrogel wound dressings hold great potential in eliminating bacteria and accelerating the healing process. However, it remains a challenge to fabricate hydrogel wound dressings that simultaneously exhibit excellent mechanical and photothermal antibacterial properties. Here we report the development of polydopamine-functionalized graphene oxide (rGO@PDA)/calcium alginate (CA)/Polypyrrole (PPy) cotton fabric-reinforced hydrogels (abbreviated as rGO@PDA/CA/PPy FHs) for tackling bacterial infections. The mechanical properties of hydrogels were greatly enhanced by cotton fabric reinforcement and an interpenetrating structure, while excellent broad-spectrum photothermal antibacterial properties based on the photothermal effect were obtained by incorporating PPy and rGO@PDA. Results indicated that rGO@PDA/CA/PPy FHs exhibited superior tensile strength in both the warp (289 ± 62.1 N) and weft directions (142 ± 23.0 N), similarly to cotton fabric. By incorporating PPy and rGO@PDA, the swelling ratio was significantly decreased from 673.5% to 236.6%, while photothermal conversion performance was significantly enhanced with a temperature elevated to 45.0 °C. Due to the synergistic photothermal properties of rGO@PDA and PPy, rGO@PDA/CA/PPy FHs exhibited excellent bacteria-eliminating efficiency for S. aureus (0.57%) and E. coli (3.58%) after exposure to NIR for 20 min. We believe that the design of fabric-reinforced hydrogels could serve as a guideline for developing hydrogel wound dressings with improved mechanical properties and broad-spectrum photothermal antibacterial properties for infected-wound treatment.

2.
Macromol Biosci ; : e2300466, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704814

RESUMEN

The potential of recombinant materials in the field of adipose tissue engineering (ATE) is investigated using a bottom-up tissue engineering (TE) approach. This study explores the synthesis of different photo-crosslinkable gelatin derivatives, including both natural and recombinant materials, with a particular emphasis on chain growth and step growth polymerization. Gelatin type B (Gel-B) and a recombinant collagen peptide (RCPhC1) are used as starting materials. The gel fraction and mass swelling properties of 2D hydrogel films are evaluated, revealing high gel fractions exceeding 94% and high mass swelling ratios >15. In vitro experiments with encapsulated adipose-derived stem cells (ASCs) indicate viable cells (>85%) throughout the experiment with the RCPhC1-based hydrogels showing a higher number of stretched ASCs. Triglyceride assays show the enhanced differentiation potential of RCPhC1 materials. Moreover, the secretome analysis reveal the production of adipose tissue-specific proteins including adiponectin, adipsin, lipocalin-2/NGAL, and PAL-1. RCPhC1-based materials exhibit higher levels of adiponectin and adipsin production, indicating successful differentiation into the adipogenic lineage. Overall, this study highlights the potential of recombinant materials for ATE applications, providing insights into their physico-chemical properties, mechanical strength, and cellular interactions.

3.
Front Bioeng Biotechnol ; 12: 1386692, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38665810

RESUMEN

Osteochondral defects are deep joint surface lesions that affect the articular cartilage and the underlying subchondral bone. In the current study, a tissue engineering approach encompassing individual cells encapsulated in a biocompatible hydrogel is explored in vitro and in vivo. Cell-laden hydrogels containing either human periosteum-derived progenitor cells (PDCs) or human induced pluripotent stem cell (iPSC)-derived chondrocytes encapsulated in gelatin methacryloyl (GelMA) were evaluated for their potential to regenerate the subchondral mineralized bone and the articular cartilage on the joint surface, respectively. PDCs are easily isolated and expanded progenitor cells that are capable of generating mineralized cartilage and bone tissue in vivo via endochondral ossification. iPSC-derived chondrocytes are an unlimited source of stable and highly metabolically active chondrocytes. Cell-laden hydrogel constructs were cultured for up to 28 days in a serum-free chemically defined chondrogenic medium. On day 1 and day 21 of the differentiation period, the cell-laden constructs were implanted subcutaneously in nude mice to evaluate ectopic tissue formation 4 weeks post-implantation. Taken together, the data suggest that iPSC-derived chondrocytes encapsulated in GelMA can generate hyaline cartilage-like tissue constructs with different levels of maturity, while using periosteum-derived cells in the same construct type generates mineralized tissue and cortical bone in vivo. Therefore, the aforementioned cell-laden hydrogels can be an important part of a multi-component strategy for the manufacturing of an osteochondral implant.

4.
Biomacromolecules ; 25(5): 2863-2874, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38564884

RESUMEN

With the rapid increase of the number of patients with gastrointestinal diseases in modern society, the need for the development of physiologically relevant in vitro intestinal models is key to improve the understanding of intestinal dysfunctions. This involves the development of a scaffold material exhibiting physiological stiffness and anatomical mimicry of the intestinal architecture. The current work focuses on evaluating the scaffold micromorphology of gelatin-methacryloyl-aminoethyl-methacrylate-based nonporous and porous intestinal 3D, intestine-like constructs, fabricated via digital light processing, on the cellular response. To this end, Caco-2 intestinal cells were utilized in combination with the constructs. Both porous and nonporous constructs promoted cell growth and differentiation toward enterocyte-like cells (VIL1, ALPI, SI, and OCLD expression showed via qPCR, ZO-1 via immunostaining). The porous constructs outperformed the nonporous ones regarding cell seeding efficiency and growth rate, confirmed by MTS assay, live/dead staining, and TEER measurements, due to the presence of surface roughness.


Asunto(s)
Hidrogeles , Andamios del Tejido , Humanos , Porosidad , Hidrogeles/química , Células CACO-2 , Andamios del Tejido/química , Proliferación Celular , Gelatina/química , Intestinos/citología , Metacrilatos/química , Ingeniería de Tejidos/métodos , Diferenciación Celular
5.
Gels ; 10(3)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38534585

RESUMEN

The tissue engineering field is currently advancing towards minimally invasive procedures to reconstruct soft tissue defects. In this regard, injectable hydrogels are viewed as excellent scaffold candidates to support and promote the growth of encapsulated cells. Cross-linked gelatin methacryloyl (GelMA) gels have received substantial attention due to their extracellular matrix-mimicking properties. In particular, GelMA microgels were recently identified as interesting scaffold materials since the pores in between the microgel particles allow good cell movement and nutrient diffusion. The current work reports on a novel microgel preparation procedure in which a bulk GelMA hydrogel is ground into powder particles. These particles can be easily transformed into a microgel by swelling them in a suitable solvent. The rheological properties of the microgel are independent of the particle size and remain stable at body temperature, with only a minor reversible reduction in elastic modulus correlated to the unfolding of physical cross-links at elevated temperatures. Salts reduce the elastic modulus of the microgel network due to a deswelling of the particles, in addition to triple helix denaturation. The microgels are suited for clinical use, as proven by their excellent cytocompatibility. The latter is confirmed by the superior proliferation of encapsulated adipose tissue-derived stem cells in the microgel compared to the bulk hydrogel. Moreover, microgels made from the smallest particles are easily injected through a 20G needle, allowing a minimally invasive delivery. Hence, the current work reveals that powdered cross-linked GelMA is an excellent candidate to serve as an injectable hydrogel for adipose tissue engineering.

6.
Drug Deliv ; 31(1): 2305818, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38424728

RESUMEN

Burn injuries can result in a significant inflammatory response, often leading to hypertrophic scarring (HTS). Local drug therapies e.g. corticoid injections are advised to treat HTS, although they are invasive, operator-dependent, extremely painful and do not permit extended drug release. Polymer-based microneedle (MN) arrays can offer a viable alternative to standard care, while allowing for direct, painless dermal drug delivery with tailorable drug release profile. In the current study, we synthesized photo-crosslinkable, acrylate-endcapped urethane-based poly(ε-caprolactone) (AUP-PCL) toward the fabrication of MNs. Physico-chemical characterization (1H-NMR, evaluation of swelling, gel fraction) of the developed polymer was performed and confirmed successful acrylation of PCL-diol. Subsequently, AUP-PCL, and commercially available PCL-based microneedle arrays were fabricated for comparative evaluation of the constructs. Hydrocortisone was chosen as model drug. To enhance the drug release efficiency of the MNs, Brij®35, a nonionic surfactant was exploited. The thermal properties of the MNs were evaluated via differential scanning calorimetry. Compression testing of the arrays confirmed that the MNs stay intact upon applying a load of 7 N, which correlates to the standard dermal insertion force of MNs. The drug release profile of the arrays was evaluated, suggesting that the developed PCL arrays can offer efficient drug delivery for up to two days, while the AUP-PCL arrays can provide a release up to three weeks. Finally, the insertion of MN arrays into skin samples was performed, followed by histological analysis demonstrating the AUP-PCL MNs outperforming the PCL arrays upon providing pyramidical-shaped perforations through the epidermal layer of the skin.


AUP-PCL MN arrays provide long-term transdermal drug delivery of hydrocortisoneAUP-PCL-based MN arrays provide superior drug release profiles compared to PCL MNsEffective skin penetration AUP-PCL-based MNs on skin was achieved.


Asunto(s)
Cicatriz Hipertrófica , Poliésteres , Humanos , Administración Cutánea , Preparaciones Farmacéuticas/metabolismo , Cicatriz Hipertrófica/tratamiento farmacológico , Cicatriz Hipertrófica/metabolismo , Liberación de Fármacos , Piel/metabolismo , Sistemas de Liberación de Medicamentos , Polímeros/metabolismo , Agujas
7.
Biomater Adv ; 159: 213827, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38490018

RESUMEN

Chronic suppurative otitis media (CSOM) is often associated with permanent tympanic membrane (TM) perforation and conductive hearing loss. The current clinical gold standard, using autografts and allografts, suffers from several drawbacks. Artificial replacement materials can help to overcome these drawbacks. Therefore, scaffolds fabricated through digital light processing (DLP) were herein created to support TM regeneration. Various UV-curable printing inks, including gelatin methacryloyl (GelMA), gelatin-norbornene-norbornene (GelNBNB) (crosslinked with thiolated gelatin (GelSH)) and alkene-functionalized poly-ε-caprolactone (E-PCL) (crosslinked with pentaerythritol tetrakis(3-mercaptopropionate) (PETA4SH)) were optimized regarding photo-initiator (PI) and photo-absorber (PA) concentrations through viscosity characterization, photo-rheology and the establishment of working curves for DLP. Our material platform enabled the development of constructs with a range of mechanical properties (plateau storage modulus varying between 15 and 119 kPa). Excellent network connectivity for the GelNBNB and E-PCL constructs was demonstrated (gel fractions >95 %) whereas a post-crosslinking step was required for the GelMA constructs. All samples showed excellent biocompatibility (viability >93 % and metabolic activity >88 %). Finally, in vivo and ex vivo assessments, including histology, vibration and deformation responses measured through laser doppler vibrometry and digital image correlation respectively, were performed to investigate the effects of the scaffolds on the anatomical and physiological regeneration of acute TM perforations in rabbits. The data showed that the most efficient healing with the best functional quality was obtained when both mechanical (obtained with the PCL-based resin) and biological (obtained with the gelatin-based resins) material properties were taken into account.


Asunto(s)
Perforación de la Membrana Timpánica , Membrana Timpánica , Animales , Conejos , Gelatina , Señales (Psicología) , Perforación de la Membrana Timpánica/cirugía , Regeneración , Norbornanos
8.
Adv Healthc Mater ; 13(13): e2303498, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38329408

RESUMEN

Cardiovascular diseases are the leading cause of death and current treatments such as stents still suffer from disadvantages. Balloon expansion causes damage to the arterial wall and limited and delayed endothelialization gives rise to restenosis and thrombosis. New more performing materials that circumvent these disadvantages are required to improve the success rate of interventions. To this end, the use of a novel polymer, poly(hexamethylene terephthalate), is investigated for this application. The synthesis to obtain polymers with high molar masses up to 126.5 kg mol-1 is optimized and a thorough chemical and thermal analysis is performed. The polymers are 3D-printed into personalized cardiovascular stents using the state-of-the-art solvent-cast direct-writing technique, the potential of these stents to expand using their shape memory behavior is established, and it is shown that the stents are more resistant to compression than the poly(l-lactide) benchmark. Furthermore, the polymer's hydrolytic stability is demonstrated in an accelerated degradation study of 6 months. Finally, the stents are subjected to an in vitro biological evaluation, revealing that the polymer is non-hemolytic and supports significant endothelialization after only 7 days, demonstrating the enormous potential of these polymers to serve cardiovascular applications.


Asunto(s)
Impresión Tridimensional , Stents , Humanos , Andamios del Tejido/química , Células Endoteliales de la Vena Umbilical Humana , Polímeros/química , Ensayo de Materiales , Poliésteres/química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología
9.
Biomacromolecules ; 25(3): 1810-1824, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38360581

RESUMEN

Polyurethanes (PUs) have adjustable mechanical properties, making them suitable for a wide range of applications, including in the biomedical field. Historically, these PUs have been synthesized from isocyanates, which are toxic compounds to handle. This has encouraged the search for safer and more environmentally friendly synthetic routes, leading today to the production of nonisocyanate polyurethanes (NIPUs). Among these NIPUs, polyhydroxyurethanes (PHUs) bear additional hydroxyl groups, which are particularly attractive for derivatizing and adjusting their physicochemical properties. In this paper, polyether-based NIPU elastomers with variable stiffness are designed by functionalizing the hydroxyl groups of a poly(propylene glycol)-PHU by a cyclic carbonate carrying a pendant unsaturation, enabling them to be post-photo-cross-linked with polythiols (thiol-ene). Elastomers with remarkable mechanical properties whose stiffness can be adjusted are obtained. Thanks to the unique viscous properties of these PHU derivatives and their short gel times observed by rheology experiments, formulations for light-based three-dimensional (3D) printing have been developed. Objects were 3D-printed by digital light processing with a resolution down to the micrometer scale, demonstrating their ability to target various designs of prime importance for personalized medicine. In vitro biocompatibility tests have confirmed the noncytotoxicity of these materials for human fibroblasts. In vitro hemocompatibility tests have revealed that they do not induce hemolytic effects, they do not increase platelet adhesion, nor activate coagulation, demonstrating their potential for future applications in the cardiovascular field.


Asunto(s)
Elastómeros , Poliuretanos , Humanos , Poliuretanos/farmacología , Poliuretanos/química , Elastómeros/química , Isocianatos/química , Prótesis e Implantes , Supuración
10.
Biomed Mater ; 19(2)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38266277

RESUMEN

Thiol-norbornene chemistry offers great potential in the field of hydrogel development, given its step growth crosslinking mechanism. However, limitations exist with regard to deposition-based bioprinting of thiol-containing hydrogels, associated with premature crosslinking of thiolated (bio)polymers resulting from disulfide formation in the presence of oxygen. More specifically, disulfide formation can result in an increase in viscosity thereby impeding the printing process. In the present work, hydrogels constituting norbornene-modified dextran (DexNB) combined with thiolated gelatin (GelSH) are selected as case study to explore the potential of incorporating the reducing agent tris(2-carboxyethyl)phosphine (TCEP), to prevent the formation of disulfides. We observed that, in addition to preventing disulfide formation, TCEP also contributed to premature, spontaneous thiol-norbornene crosslinking without the use of UV light as evidenced via1H-NMR spectroscopy. Herein, an optimal concentration of 25 mol% TCEP with respect to the amount of thiols was found, thereby limiting auto-gelation by both minimizing disulfide formation and spontaneous thiol-norbornene reaction. This concentration results in a constant viscosity during at least 24 h, a more homogeneous network being formed as evidenced using atomic force microscopy while retaining bioink biocompatibility as evidenced by a cell viability of human foreskin fibroblasts exceeding 70% according to ISO 10993-6:2016.


Asunto(s)
Bioimpresión , Fosfinas , Compuestos de Sulfhidrilo , Humanos , Compuestos de Sulfhidrilo/química , Ingeniería de Tejidos/métodos , Gelatina/química , Polisacáridos , Norbornanos/química , Hidrogeles/química , Disulfuros , Impresión Tridimensional , Bioimpresión/métodos , Andamios del Tejido/química
11.
Biomacromolecules ; 25(2): 590-604, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38174962

RESUMEN

The application of liver organoids is very promising in the field of liver tissue engineering; however, it is still facing some limitations. One of the current major limitations is the matrix in which they are cultured. The mainly undefined and murine-originated tumor matrices derived from Engelbreth-Holm-Swarm (EHS) sarcoma, such as Matrigel, are still the standard culturing matrices for expansion and differentiation of organoids toward hepatocyte-like cells, which will obstruct its future clinical application potential. In this study, we exploited the use of newly developed highly defined hydrogels as potential matrices for the culture of liver organoids and compared them to Matrigel and two hydrogels that were already researched in the field of organoid research [i.e., polyisocyanopeptides, enriched with laminin-entactin complex (PIC-LEC) and gelatin methacryloyl (GelMA)]. The newly developed hydrogels are materials that have a physicochemical resemblance with native liver tissue. Norbornene-modified dextran cross-linked with thiolated gelatin (DexNB-GelSH) has a swelling ratio and macro- and microscale properties that highly mimic liver tissue. Norbornene-modified chondroitin sulfate cross-linked with thiolated gelatin (CSNB-GelSH) contains chondroitin sulfate, which is a glycosaminoglycan (GAG) that is present in the liver ECM. Furthermore, CSNB-GelSH hydrogels with different mechanical properties were evaluated. Bipotent intrahepatic cholangiocyte organoids (ICOs) were applied in this work and encapsulated in these materials. This research revealed that the newly developed materials outperformed Matrigel, PIC-LEC, and GelMA in the differentiation of ICOs toward hepatocyte-like cells. Furthermore, some trends indicate that an interplay of both the chemical composition and the mechanical properties has an influence on the relative expression of certain hepatocyte markers. Both DexNB-GelSH and CSNB-GelSH showed promising results for the expansion and differentiation of intrahepatic cholangiocyte organoids. The stiffest CSNB-GelSH hydrogel even significantly outperformed Matrigel based on ALB, BSEP, and CYP3A4 gene expression, being three important hepatocyte markers.


Asunto(s)
Gelatina , Hidrogeles , Ratones , Animales , Gelatina/química , Hidrogeles/farmacología , Hidrogeles/química , Sulfatos de Condroitina , Organoides , Ingeniería de Tejidos/métodos , Norbornanos
12.
Macromol Biosci ; 24(3): e2300202, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37913549

RESUMEN

Infections are still a major cause of morbidity in burn wounds. Although silver has been used strongly in past centuries as an anti-bacterial, it can lead to allergic reactions, bacterial resistance, and delayed wound healing. Iodine-based antibacterials are becoming an interesting alternative. In this work, the effect of complexation with poly(vinyl pyrrolidone) (PVP) and poly(ethylene oxide) (PEO)-based polymers is explored by using different acrylate-endcapped urethane-based poly(ethylene glycol) (AUP) polymers, varying the molar mass (MM) of the poly(ethylene glycol) (PEG) backbone, with possible addition of PVP. The higher MM AUP outperforms the swelling potential of commercial wound dressings such as Kaltostat, Aquacel Ag, and Hydrosorb and all MM show superior mechanical properties. The addition of iodine to the polymers is compared to Iso-Betadine Tulle (IBT). Interestingly, the addition of PVP does not lead to increased iodine complexation compared to the blank AUP polymers, while all have a prolonged iodine release compared to the IBT, which leads to a burst release. The observed prolonged release also leads to larger inhibition zones during antibacterial tests. Complexing iodine in AUP polymers with or without PVP leads to antimicrobial wound dressings which may hold potential for future application to treat infected wounds.


Asunto(s)
Yodo , Yodo/farmacología , Uretano , Antibacterianos/farmacología , Polímeros , Povidona Yodada/farmacología , Vendajes , Polietilenglicoles/farmacología , Acrilatos , Hidrogeles
13.
Macromol Biosci ; 24(4): e2300395, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37997022

RESUMEN

Bone regeneration remains a clinical challenge given the transplantation incidence rate and the associated economic burden. Bottom-up osteoid tissue engineering has the potential to offer an alternative approach to current clinical solutions that suffer from various drawbacks. In this paper, deposition-based bioprinting is exploited while the effect is explored of both the crosslinking mechanism (gelatin methacryloyl (GelMA) versus gelatin norbornene (DS 91) crosslinked with thiolated gelatin (GelNBSH)) and the degree of substitution (GelNBSH versus norbornene-norbornene-modified gelatin (DS 169) crosslinked with thiolated gelatin (GelNBNBSH)) on the presented biophysical cues as well as on the osteogenic differentiation. The incorporation of tris(2-carboxyethyl)phosphine (TCEP) to the step-growth inks allows the production of reproducible and biocompatible scaffolds based on thiol-ene chemistry. Dental pulp stem cell encapsulation in GelNBNBSH biofabricated constructs shows a favorable response due to the combination of its stress relaxation and substrate rigidity (bulk compressive modulus of 11-30 kPa) as reflected by a sevenfold increase in calcium production compared to the tissue engineering standard GelMA. This work is the first to exploit a controlled biocompatible and cell-interactive thiolated macromolecular crosslinker (GelSH + TCEP) allowing the extrusion-based biofabrication of low concentration (5 w/v%) modified osteogenic gelatin-based inks (GelNBNBSH + TCEP).


Asunto(s)
Bioimpresión , Fosfinas , Andamios del Tejido , Humanos , Andamios del Tejido/química , Osteogénesis , Gelatina/química , Ingeniería de Tejidos , Hidrogeles/química , Norbornanos , Impresión Tridimensional
14.
Int J Biol Macromol ; 254(Pt 1): 127619, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37898251

RESUMEN

Given the clinical need for osteoregenerative materials incorporating controlled biomimetic and biophysical cues, a novel highly-substituted norbornene-modified gelatin was developed enabling thiol-ene crosslinking exploiting thiolated gelatin as cell-interactive crosslinker. Comparing the number of physical crosslinks, the degree of hydrolytic degradation upon modification, the network density and the chemical crosslinking type, the osteogenic effect of visco-elastic and topographical properties was evaluated. This novel network outperformed conventional gelatin-based networks in terms of osteogenesis induction, as evidenced in 2D dental pulp stem cell seeding assays, resulting from the presentation of both a local (substrate elasticity, 25-40 kPa) and a bulk (compressive modulus, 25-45 kPa) osteogenic substrate modulus in combination with adequate fibrillar cell adhesion spacing to optimally transfer traction forces from the fibrillar ECM (as evidenced by mesh size determination with the rubber elasticity theory) and resulting in a 1.7-fold increase in calcium production (compared to the gold standard gelatin methacryloyl (GelMA)).


Asunto(s)
Biomimética , Gelatina , Gelatina/química , Señales (Psicología) , Osteogénesis , Hidrogeles/química , Ingeniería de Tejidos/métodos
15.
Front Bioeng Biotechnol ; 11: 1285565, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38053846

RESUMEN

A previously developed cellularized collagen-based vascular wall model showed promising results in mimicking the biological properties of a native vessel but lacked appropriate mechanical properties. In this work, we aim to improve this collagen-based model by reinforcing it using a tubular polymeric (reinforcement) scaffold. The polymeric reinforcements were fabricated exploiting commercial poly (ε-caprolactone) (PCL), a polymer already used to fabricate other FDA-approved and commercially available devices serving medical applications, through 1) solution electrospinning (SES), 2) 3D printing (3DP) and 3) melt electrowriting (MEW). The non-reinforced cellularized collagen-based model was used as a reference (COL). The effect of the scaffold's architecture on the resulting mechanical and biological properties of the reinforced collagen-based model were evaluated. SEM imaging showed the differences in scaffolds' architecture (fiber alignment, fiber diameter and pore size) at both the micro- and the macrolevel. The polymeric scaffold led to significantly improved mechanical properties for the reinforced collagen-based model (initial elastic moduli of 382.05 ± 132.01 kPa, 100.59 ± 31.15 kPa and 245.78 ± 33.54 kPa, respectively for SES, 3DP and MEW at day 7 of maturation) compared to the non-reinforced collagen-based model (16.63 ± 5.69 kPa). Moreover, on day 7, the developed collagen gels showed stresses (for strains between 20% and 55%) in the range of [5-15] kPa for COL, [80-350] kPa for SES, [20-70] kPa for 3DP and [100-190] kPa for MEW. In addition to the effect on the resulting mechanical properties, the polymeric tubes' architecture influenced cell behavior, in terms of proliferation and attachment, along with collagen gel compaction and extracellular matrix protein expression. The MEW reinforcement resulted in a collagen gel compaction similar to the COL reference, whereas 3DP and SES led to thinner and longer collagen gels. Overall, it can be concluded that 1) the selected processing technique influences the scaffolds' architecture, which in turn influences the resulting mechanical and biological properties, and 2) the incorporation of a polymeric reinforcement leads to mechanical properties closely matching those of native arteries.

16.
J Mater Chem B ; 11(42): 10158-10173, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37850250

RESUMEN

Cardiovascular diseases are the leading cause of death worldwide. Treatments for occluded arteries include balloon angioplasty with or without stenting and bypass grafting surgery. Poly(ethylene terephthalate) is frequently used as a vascular graft material, but its high stiffness leads to compliance mismatch with the human blood vessels, resulting in altered hemodynamics, thrombus formation and graft failure. Poly(alkylene terephthalate)s (PATs) with longer alkyl chain lengths hold great potential for improving the compliance. In this work, the effect of the polymer molar mass and the alkyl chain length on the surface roughness and wettability of spin-coated PAT films was investigated, as well as the endothelial cell adhesion and proliferation on these samples. We found that surface roughness generally increases with increasing molar mass and alkyl chain length, while no trend for the wettability could be observed. All investigated PATs are non-cytotoxic and support endothelial cell adhesion and growth. For some PATs, the endothelial cells even reorganized into a tubular-like structure, suggesting angiogenic maturation. In conclusion, this research demonstrates the biocompatibility of PATs and their potential to be applied as materials serving cardiovascular applications.


Asunto(s)
Células Endoteliales , Polímeros , Humanos , Adhesión Celular , Polímeros/farmacología , Polímeros/química , Propiedades de Superficie
17.
Adv Mater Technol ; 8(15)2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37811162

RESUMEN

Conventional additive manufacturing and biofabrication techniques are unable to edit the chemicophysical properties of the printed object postprinting. Herein, a new approach is presented, leveraging light-based volumetric printing as a tool to spatially pattern any biomolecule of interest in custom-designed geometries even across large, centimeter-scale hydrogels. As biomaterial platform, a gelatin norbornene resin is developed with tunable mechanical properties suitable for tissue engineering applications. The resin can be volumetrically printed within seconds at high resolution (23.68 ± 10.75 µm). Thiol-ene click chemistry allows on-demand photografting of thiolated compounds postprinting, from small to large (bio)molecules (e.g., fluorescent dyes or growth factors). These molecules are covalently attached into printed structures using volumetric light projections, forming 3D geometries with high spatiotemporal control and ≈50 µm resolution. As a proof of concept, vascular endothelial growth factor is locally photografted into a bioprinted construct and demonstrated region-dependent enhanced adhesion and network formation of endothelial cells. This technology paves the way toward the precise spatiotemporal biofunctionalization and modification of the chemical composition of (bio)printed constructs to better guide cell behavior, build bioactive cue gradients. Moreover, it opens future possibilities for 4D printing to mimic the dynamic changes in morphogen presentation natively experienced in biological tissues.

18.
Biomater Res ; 27(1): 104, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37853495

RESUMEN

BACKGROUND: Long-term drug evaluation heavily relies upon rodent models. Drug discovery methods to reduce animal models in oncology may include three-dimensional (3D) cellular systems that take into account tumor microenvironment (TME) cell types and biomechanical properties. METHODS: In this study we reconstructed a 3D tumor using an elastic polymer (acrylate-endcapped urethane-based poly(ethylene glycol) (AUPPEG)) with clinical relevant stiffness. Single cell suspensions from low-grade serous ovarian cancer (LGSOC) patient-derived early passage cultures of cancer cells and cancer-associated fibroblasts (CAF) embedded in a collagen gel were introduced to the AUPPEG scaffold. After self-organization in to a 3D tumor, this model was evaluated by a long-term (> 40 days) exposure to a drug combination of MEK and HSP90 inhibitors. The drug-response results from this long-term in vitro model are compared with drug responses in an orthotopic LGSOC xenograft mouse model. RESULTS: The in vitro 3D scaffold LGSOC model mimics the growth ratio and spatial organization of the LGSOC. The AUPPEG scaffold approach allows to test new targeted treatments and monitor long-term drug responses. The results correlate with those of the orthotopic LGSOC xenograft mouse model. CONCLUSIONS: The mechanically-tunable scaffolds colonized by a three-dimensional LGSOC allow long-term drug evaluation and can be considered as a valid alternative to reduce, replace and refine animal models in drug discovery.

19.
ACS Appl Mater Interfaces ; 15(36): 42241-42250, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37650520

RESUMEN

Nanofibrous scaffolds are widely investigated for tendon tissue engineering due to their porous structure, high flexibility, and the ability to guide cells in a preferred direction. Previous research has shown that providing a microenvironment similar to in vivo settings improves tissue regeneration. Therefore, in this work, ingenious multicomponent nanoyarn scaffolds that mimic the fibrillar and tubular structures of tendons are developed for the first time through electrospinning and bundling nanoyarns followed by electrospinning of a nanofibrous shell around the bundle. Multicomponent nanoyarn scaffolds out of poly(ε-caprolactone) with varying porosity, density, and diameter were successfully produced by coelectrospinning with water-soluble poly(2-ethyl-2-oxazoline) as a sacrificial component. The diameter and fiber orientation of the nanoyarns were successfully tuned based on parameter-morphology models obtained by the design of experiments. Cyclic bending tests were performed, indicating that the flexibility of the multicomponent nanoyarn scaffolds depends on the morphology and can be tuned through controlling the number of nanoyarns in the bundle and the porosity. Indirect and direct cell culture tests using mouse and equine tendon cells revealed excellent cytocompatibility of the nanofibrous products and demonstrated the potential of the nanoyarns to guide the growing cells along the nanofiber direction, which is crucial for tendon tissue engineering.


Asunto(s)
Técnicas de Cultivo de Célula , Nanofibras , Animales , Caballos , Ratones , Citoesqueleto , Poli A , Tendones
20.
Macromol Biosci ; 23(10): e2300016, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37243584

RESUMEN

To provide prominent accessibility of fishmeal to the European population, the currently available, time- and cost-extensive feeding trials, which evaluate fish feed, should be replaced. The current paper reports on the development of a novel 3D culture platform, mimicking the microenvironment of the intestinal mucosa in vitro. The key requirements of the model include sufficient permeability for nutrients and medium-size marker molecules (equilibrium within 24 h), suitable mechanical properties (G' < 10 kPa), and close morphological similarity to the intestinal architecture. To enable processability with light-based 3D printing, a gelatin-methacryloyl-aminoethyl-methacrylate-based biomaterial ink is developed and combined with Tween 20 as porogen to ensure sufficient permeability. To assess the permeability properties of the hydrogels, a static diffusion setup is utilized, indicating that the hydrogel constructs are permeable for a medium size marker molecule (FITC-dextran 4 kg mol-1 ). Moreover, the mechanical evaluation through rheology evidence a physiologically relevant scaffold stiffness (G' = 4.83 ± 0.78 kPa). Digital light processing-based 3D printing of porogen-containing hydrogels results in the creation of constructs exhibiting a physiologically relevant microarchitecture as evidenced through cryo-scanning electron microscopy. Finally, the combination of the scaffolds with a novel rainbow trout (Oncorhynchus mykiss) intestinal epithelial cell line (RTdi-MI) evidence scaffold biocompatibility.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...