Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Magn Reson Med ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649922

RESUMEN

PURPOSE: We examined magnetic field dependent SNR gains and ability to capture them with multichannel receive arrays for human head imaging in going from 7 T, the most commonly used ultrahigh magnetic field (UHF) platform at the present, to 10.5 T, which represents the emerging new frontier of >10 T in UHFs. METHODS: Electromagnetic (EM) models of 31-channel and 63-channel multichannel arrays built for 10.5 T were developed for 10.5 T and 7 T simulations. A 7 T version of the 63-channel array with an identical coil layout was also built. Array performance was evaluated in the EM model using a phantom mimicking the size and electrical properties of the human head and a digital human head model. Experimental data was obtained at 7 T and 10.5 T with the 63-channel array. Ultimate intrinsic SNR (uiSNR) was calculated for the two field strengths using a voxelized cloud of dipoles enclosing the phantom or the digital human head model as a reference to assess the performance of the two arrays and field depended SNR gains. RESULTS: uiSNR calculations in both the phantom and the digital human head model demonstrated SNR gains at 10.5 T relative to 7 T of 2.6 centrally, ˜2 at the location corresponding to the edge of the brain, ˜1.4 at the periphery. The EM models demonstrated that, centrally, both arrays captured ˜90% of the uiSNR at 7 T, but only ˜65% at 10.5 T, leading only to ˜2-fold gain in array SNR in going from 7 to 10.5 T. This trend was also observed experimentally with the 63-channel array capturing a larger fraction of the uiSNR at 7 T compared to 10.5 T, although the percentage of uiSNR captured were slightly lower at both field strengths compared to EM simulation results. CONCLUSIONS: Major uiSNR gains are predicted for human head imaging in going from 7 T to 10.5 T, ranging from ˜2-fold at locations corresponding to the edge of the brain to 2.6-fold at the center, corresponding to approximately quadratic increase with the magnetic field. Realistic 31- and 63-channel receive arrays, however, approach the central uiSNR at 7 T, but fail to do so at 10.5 T, suggesting that more coils and/or different type of coils will be needed at 10.5 T and higher magnetic fields.

2.
Neuroradiology ; 65(8): 1301-1309, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37347460

RESUMEN

PURPOSE: The peripheral course of the trigeminal nerves is complex and spans multiple bony foramen and tissue compartments throughout the face. Diffusion tensor imaging of these nerves is difficult due to the complex tissue interfaces and relatively low MR signal. The purpose of this work is to develop a method for reliable diffusion tensor imaging-based fiber tracking of the peripheral branches of the trigeminal nerve. METHODS: We prospectively acquired imaging data from six healthy adult participants with a 3.0-Tesla system, including T2-weighted short tau inversion recovery with variable flip angle (T2-STIR-SPACE) and readout segmented echo planar diffusion weighted imaging sequences. Probabilistic tractography of the ophthalmic, infraorbital, lingual, and inferior alveolar nerves was performed manually and assessed by two observers who determined whether the fiber tracts reached defined anatomical landmarks using the T2-STIR-SPACE volume. RESULTS: All nerves in all subjects were tracked beyond the trigeminal ganglion. Tracts in the inferior alveolar and ophthalmic nerve exhibited the strongest signal and most consistently reached the most distal landmark (58% and 67%, respectively). All tracts of the inferior alveolar and ophthalmic nerve extended beyond their respective third benchmarks. Tracts of the infraorbital nerve and lingual nerve were comparably lower-signal and did not consistently reach the furthest benchmarks (9% and 17%, respectively). CONCLUSION: This work demonstrates a method for consistently identifying and tracking the major nerve branches of the trigeminal nerve with diffusion tensor imaging.


Asunto(s)
Imagen de Difusión Tensora , Nervio Trigémino , Adulto , Humanos , Imagen de Difusión Tensora/métodos , Nervio Trigémino/diagnóstico por imagen , Imagen Eco-Planar
3.
J Biomech ; 141: 111211, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35780698

RESUMEN

The process of an intracranial aneurysm development, growth, and rupture is multifaceted and complex. In addition, clinical observations have identified the potential of thrombus formation within such aneurysms. While the underlying mechanism is not fully understood, the thrombi represent a potential risk factor for ischemic stroke. Emerging studies indicate that blood residence time (RT) is a promising hemodynamic metric associated with the aneurysm rupture and formation of intra-aneurysmal thrombi. Here, we present a methodology to experimentally evaluate both trajectory-wise and local RT based on magnetic resonance imaging (MRI) velocimetry, and apply it to in vitro flow measurements in scaled-up replicas of 9 patient-specific intracranial aneurysms. Lagrangian tracks of massless tracers are integrated from the velocity fields and averaged to return the mean RT in the aneurysm sac. This is found to be closely approximated by a simple time scale based on the sac diameter and space-time average of the aneurysmal fluid velocity. The mean RT is also correlated with the inflow time scale at the parent artery. These results also provide a basis for the estimation of RT when high-resolution hemodynamic maps are not available. With the continuous increase in accuracy and resolution enabled by progress in MRI technology, the methodology described here may in the future be applicable to in vivo data.


Asunto(s)
Aneurisma Roto , Aneurisma Intracraneal , Trombosis , Velocidad del Flujo Sanguíneo , Hemodinámica , Humanos , Aneurisma Intracraneal/diagnóstico por imagen , Aneurisma Intracraneal/patología , Imagen por Resonancia Magnética/métodos
4.
Magn Reson Med ; 88(5): 2131-2138, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35849739

RESUMEN

PURPOSE: The SNR at the center of a spherical phantom of known electrical properties was measured in quasi-identical experimental conditions as a function of magnetic field strength between 3 T and 11.7 T. METHODS: The SNR was measured at the center of a spherical water saline phantom with a gradient-recalled echo sequence. Measurements were performed at NeuroSpin at 3, 7, and 11.7 T. The phantom was then shipped to Maastricht University and then to the University of Minnesota for additional data points at 7, 9.4, and 10.5 T. Experiments were carried out with the exact same type of birdcage volume coil (except at 3 T, where a similar coil was used) to attempt at isolating the evolution of SNR with field strength alone. Phantom electrical properties were characterized over the corresponding frequency range. RESULTS: Electrical properties were found to barely vary over the frequency range. Removing the influence of the flip-angle excitation inhomogeneity was crucial, as expected. After such correction, measurements revealed a gain of SNR growing as B0 1.94 ± 0.16 compared with B0 2.13 according to ultimate intrinsic SNR theory. CONCLUSIONS: By using quasi-identical experimental setups (RF volume coil, phantom, electrical properties, and protocol), this work reports experimental data between 3 T and 11.7 T, enabling the comparison with SNR theories in which conductivity and permittivity can be assumed to be constant with respect to field strength. According to ultimate SNR theory, these results can be reasonably extrapolated to the performance of receive arrays with greater than about 32 elements for central SNR in the same spherical phantom.


Asunto(s)
Imagen por Resonancia Magnética , Ondas de Radio , Humanos , Campos Magnéticos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Relación Señal-Ruido
5.
Neuroradiology ; 64(3): 603-609, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35043225

RESUMEN

INTRODUCTION: Trigeminal neuralgia (TN) is a devastating neuropathic condition. This work tests whether radiomics features derived from MRI of the trigeminal nerve can distinguish between TN-afflicted and pain-free nerves. METHODS: 3D T1- and T2-weighted 1.5-Tesla MRI volumes were retrospectively acquired for patients undergoing stereotactic radiosurgery to treat TN. A convolutional U-net deep learning network was used to segment the trigeminal nerves from the pons to the ganglion. A total of 216 radiomics features consisting of image texture, shape, and intensity were extracted from each nerve. Within a cross-validation scheme, a random forest feature selection method was used, and a shallow neural network was trained using the selected variables to differentiate between TN-affected and non-affected nerves. Average performance over the validation sets was measured to estimate generalizability. RESULTS: A total of 134 patients (i.e., 268 nerves) were included. The top 16 performing features extracted from the masks were selected for the predictive model. The average validation accuracy was 78%. The validation AUC of the model was 0.83, and sensitivity and specificity were 0.82 and 0.76, respectively. CONCLUSION: Overall, this work suggests that radiomics features from MR imaging of the trigeminal nerves correlate with the presence of pain from TN.


Asunto(s)
Radiocirugia , Neuralgia del Trigémino , Humanos , Imagen por Resonancia Magnética/métodos , Radiocirugia/métodos , Estudios Retrospectivos , Nervio Trigémino/diagnóstico por imagen , Neuralgia del Trigémino/diagnóstico por imagen , Neuralgia del Trigémino/cirugía
6.
Magn Reson Med ; 87(4): 2074-2088, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34825735

RESUMEN

PURPOSE: The purpose of this study is to introduce a new antenna element with improved transmit performance, named the nonuniform dielectric substrate (NODES) antenna, for building transmit arrays at ultrahigh-field. METHODS: We optimized a dipole antenna at 10.5 Tesla by maximizing the B1+ -SAR efficiency in a phantom for a human spine target. The optimization parameters included permittivity variation in the substrate, substrate thickness, antenna length, and conductor geometry. We conducted electromagnetic simulations as well as phantom experiments to compare the transmit/receive performance of the proposed NODES antenna design with existing coil elements from the literature. RESULTS: Single NODES element showed up to 18% and 30% higher B1+ -SAR efficiency than the fractionated dipole and loop elements, respectively. The new element is substantially shorter than a commonly used dipole, which enables z-stacked array formation; it is additionally capable of providing a relatively uniform current distribution along its conductors. The nine-channel transmit/receive NODES array achieved 7.5% higher B1+ homogeneity than a loop array with the same number of elements. Excitation with the NODES array resulted in 33% lower peak 10g-averaged SAR and required 34% lower input power than the loop array for the target anatomy of the spine. CONCLUSION: In this study, we introduced a new RF coil element: the NODES antenna. NODES antenna outperformed the widely used loop and dipole elements and may provide improved transmit/receive performance for future ultrahigh field MRI applications.


Asunto(s)
Imagen por Resonancia Magnética , Ondas de Radio , Diseño de Equipo , Humanos , Fantasmas de Imagen , Columna Vertebral/diagnóstico por imagen
7.
Magn Reson Med ; 86(3): 1759-1772, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33780032

RESUMEN

PURPOSE: Receive array layout, noise mitigation, and B0 field strength are crucial contributors to SNR and parallel-imaging performance. Here, we investigate SNR and parallel-imaging gains at 10.5 T compared with 7 T using 32-channel receive arrays at both fields. METHODS: A self-decoupled 32-channel receive array for human brain imaging at 10.5 T (10.5T-32Rx), consisting of 31 loops and one cloverleaf element, was co-designed and built in tandem with a 16-channel dual-row loop transmitter. Novel receive array design and self-decoupling techniques were implemented. Parallel imaging performance, in terms of SNR and noise amplification (g-factor), of the 10.5T-32Rx was compared with the performance of an industry-standard 32-channel receiver at 7 T (7T-32Rx) through experimental phantom measurements. RESULTS: Compared with the 7T-32Rx, the 10.5T-32Rx provided 1.46 times the central SNR and 2.08 times the peripheral SNR. Minimum inverse g-factor value of the 10.5T-32Rx (min[1/g] = 0.56) was 51% higher than that of the 7T-32Rx (min[1/g] = 0.37) with R = 4 × 4 2D acceleration, resulting in significantly enhanced parallel-imaging performance at 10.5 T compared with 7 T. The g-factor values of 10.5 T-32 Rx were on par with those of a 64-channel receiver at 7 T (eg, 1.8 vs 1.9, respectively, with R = 4 × 4 axial acceleration). CONCLUSION: Experimental measurements demonstrated effective self-decoupling of the receive array as well as substantial gains in SNR and parallel-imaging performance at 10.5 T compared with 7 T.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Aceleración , Encéfalo/diagnóstico por imagen , Diseño de Equipo , Humanos , Fantasmas de Imagen , Relación Señal-Ruido
8.
IEEE Trans Biomed Eng ; 68(2): 393-403, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32746019

RESUMEN

OBJECTIVE: 7-Tesla MRI of the hippocampus enhances the visualization of its internal substructures. Among these substructures, the cornu Ammonis and subiculum form a contiguous folded ribbon of gray matter. Here, we propose a method to analyze local thickness measurements of this ribbon. METHODS: We introduce an original approach based upon the estimation of a diffeomorphic vector field that traverses the ribbon. The method is designed to handle specificities of the hippocampus and corresponding 7-Tesla acquisitions: highly convoluted surface, non-closed ribbon, incompletely defined inner/outer boundaries, anisotropic acquisitions. We furthermore propose to conduct group comparisons using a population template built from the central surfaces of individual subjects. RESULTS: We first assessed the robustness of our approach to anisotropy, as well as to inter-rater variability, on a post-mortem scan and on in vivo acquisitions respectively. We then conducted a group study on a dataset of in vivo MRI from temporal lobe epilepsy (TLE) patients and healthy controls. The method detected local thinning patterns in patients, predominantly ipsilaterally to the seizure focus, which is consistent with medical knowledge. CONCLUSION: This new technique allows measuring the thickness of the hippocampus from 7-Tesla MRI. It shows good robustness with respect to anisotropy and inter-rater variability and has the potential to detect local atrophy in patients. SIGNIFICANCE: As 7-Tesla MRI is increasingly available, this new method may become a useful tool to study local alterations of the hippocampus in brain disorders. It is made freely available to the community (code: https://github.com/aramis-lab/hiplay7-thickness, postmortem segmentation: https://doi.org/10.5281/zenodo.3533264).


Asunto(s)
Epilepsia del Lóbulo Temporal , Hipocampo , Atrofia/patología , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Hipocampo/diagnóstico por imagen , Humanos , Imagen por Resonancia Magnética , Convulsiones
9.
Neurology ; 96(7): 327-341, 2021 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-33361257

RESUMEN

Identifying a structural brain lesion on MRI has important implications in epilepsy and is the most important factor that correlates with seizure freedom after surgery in patients with drug-resistant focal onset epilepsy. However, at conventional magnetic field strengths (1.5 and 3T), only approximately 60%-85% of MRI examinations reveal such lesions. Over the last decade, studies have demonstrated the added value of 7T MRI in patients with and without known epileptogenic lesions from 1.5 and/or 3T. However, translation of 7T MRI to clinical practice is still challenging, particularly in centers new to 7T, and there is a need for practical recommendations on targeted use of 7T MRI in the clinical management of patients with epilepsy. The 7T Epilepsy Task Force-an international group representing 21 7T MRI centers with experience from scanning over 2,000 patients with epilepsy-would hereby like to share its experience with the neurology community regarding the appropriate clinical indications, patient selection and preparation, acquisition protocols and setup, technical challenges, and radiologic guidelines for 7T MRI in patients with epilepsy. This article mainly addresses structural imaging; in addition, it presents multiple nonstructural MRI techniques that benefit from 7T and hold promise as future directions in epilepsy. Answering to the increased availability of 7T MRI as an approved tool for diagnostic purposes, this article aims to provide guidance on clinical 7T MRI epilepsy management by giving recommendations on referral, suitable 7T MRI protocols, and image interpretation.


Asunto(s)
Encéfalo/diagnóstico por imagen , Epilepsia/diagnóstico por imagen , Imagen por Resonancia Magnética , Consenso , Humanos
10.
Magn Reson Imaging Clin N Am ; 29(1): e1-e19, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33237019

RESUMEN

Especially after the launch of 7 T, the ultrahigh magnetic field (UHF) imaging community achieved critically important strides in our understanding of the physics of radiofrequency interactions in the human body, which in turn has led to solutions for the challenges posed by such UHFs. As a result, the originally obtained poor image quality has progressed to the high-quality and high-resolution images obtained at 7 T and now at 10.5 T in the human torso. Despite these tremendous advances, work still remains to further improve the image quality and fully capitalize on the potential advantages UHF has to offer.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Torso/diagnóstico por imagen , Humanos
11.
Magn Reson Med ; 84(6): 3485-3493, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32767392

RESUMEN

PURPOSE: In this study, we investigate a strategy to reduce the local specific absorption rate (SAR) while keeping B1+ constant inside the region of interest (ROI) at the ultra-high field (B0 ≥ 7T) MRI. METHODS: Locally raising the resonance structure under the discontinuity (i.e., creating a bump) increases the distance between the accumulated charges and the tissue. As a result, it reduces the electric field and local SAR generated by these charges inside the tissue. The B1+ at a point that is sufficiently far from the coil, however, is not affected by this modification. In this study, three different resonant elements (i.e., loop coil, snake antenna, and fractionated dipole [FD]) are investigated. For experimental validation, a bumped FD is further investigated at 10.5T. After the validation, the transmit performances of eight-channel arrays of each element are compared through electromagnetic (EM) simulations. RESULTS: Introducing a bump reduced the peak 10g-averaged SAR by 21, 26, 23% for the loop and snake antenna at 7T, and FD at 10.5T, respectively. In addition, eight-channel bumped FD array at 10.5T had a 27% lower peak 10g-averaged SAR in a realistic human body simulation (i.e., prostate imaging) compared to an eight-channel FD array. CONCLUSION: In this study, we investigated a simple design strategy based on adding bumps to a resonant element to reduce the local SAR while maintaining B1+ inside an ROI. As an example, we modified an FD and performed EM simulations and phantom experiments with a 10.5T scanner. Results show that the peak 10g-averaged SAR can be reduced more than 25%.


Asunto(s)
Imagen por Resonancia Magnética , Ondas de Radio , Diseño de Equipo , Humanos , Masculino , Fantasmas de Imagen , Próstata
12.
Magn Reson Imaging ; 73: 163-176, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32822819

RESUMEN

PURPOSE: To perform a pilot study to quantitatively assess cognitive, vestibular, and physiological function during and after exposure to a magnetic resonance imaging (MRI) system with a static field strength of 10.5 Tesla at multiple time scales. METHODS: A total of 29 subjects were exposed to a 10.5 T MRI field and underwent vestibular, cognitive, and physiological testing before, during, and after exposure; for 26 subjects, testing and exposure were repeated within 2-4 weeks of the first visit. Subjects also reported sensory perceptions after each exposure. Comparisons were made between short and long term time points in the study with respect to the parameters measured in the study; short term comparison included pre-vs-isocenter and pre-vs-post (1-24 h), while long term compared pre-exposures 2-4 weeks apart. RESULTS: Of the 79 comparisons, 73 parameters were unchanged or had small improvements after magnet exposure. The exceptions to this included lower scores on short term (i.e. same day) executive function testing, greater isocenter spontaneous eye movement during visit 1 (relative to pre-exposure), increased number of abnormalities on videonystagmography visit 2 versus visit 1 and a mix of small increases (short term visit 2) and decreases (short term visit 1) in blood pressure. In addition, more subjects reported metallic taste at 10.5 T in comparison to similar data obtained in previous studies at 7 T and 9.4 T. CONCLUSION: Initial results of 10.5 T static field exposure indicate that 1) cognitive performance is not compromised at isocenter, 2) subjects experience increased eye movement at isocenter, and 3) subjects experience small changes in vital signs but no field-induced increase in blood pressure. While small but significant differences were found in some comparisons, none were identified as compromising subject safety. A modified testing protocol informed by these results was devised with the goal of permitting increased enrollment while providing continued monitoring to evaluate field effects.


Asunto(s)
Presión Sanguínea , Cognición/fisiología , Imagen por Resonancia Magnética , Oído Interno/diagnóstico por imagen , Oído Interno/fisiología , Humanos , Masculino , Proyectos Piloto , Adulto Joven
13.
Magn Reson Med ; 84(5): 2885-2896, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32367560

RESUMEN

PURPOSE: To improve imaging performance for body MRI with a local transmit array at 10.5T, the geometry of a dipole antenna was optimized to achieve lower peak specific absorption rate (SAR) levels and a more uniform transmit profile. METHODS: Electromagnetic simulations on a phantom were used to evaluate the SAR and B 1 + -performance of different dipole antenna geometries. The best performing antenna (the snake antenna) was simulated on human models in a 12-channel array configuration for safety assessment and for comparison to a previous antenna design. This 12-channel array was constructed after which electromagnetic simulations were validated by B 1 + -maps and temperature measurements. After obtaining approval by the Food and Drug Administration to scan with the snake antenna array, in vivo imaging was performed on 2 volunteers. RESULTS: Simulation results on a phantom indicate a lower SAR and a higher transmit efficiency for the snake antenna compared to the fractionated dipole array. Similar results are found on a human body model: when comparing the trade-off between uniformity and peak SAR, the snake antenna performs better for all imaging targets. Simulations and measurements are in good agreement. Preliminary imaging result were acquired in 2 volunteers with the 12-channel snake antenna array. CONCLUSION: By optimizing the geometry of a dipole antenna, peak SAR levels were lowered while achieving a more uniform transmit field as demonstrated in simulations on a phantom and a human body model. The array was constructed, validated, and successfully used to image 2 individuals at 10.5T.


Asunto(s)
Imagen por Resonancia Magnética , Próstata , Animales , Diseño de Equipo , Humanos , Masculino , Fantasmas de Imagen , Serpientes
14.
Neuroimage ; 216: 116861, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32305565

RESUMEN

Over the recent years, significant advances in Spin-Echo (SE) Echo-Planar (EP) Diffusion MRI (dMRI) have enabled improved fiber tracking conspicuity in the human brain. At the same time, pushing the spatial resolution and using higher b-values inherently expose the acquired images to further eddy-current-induced distortion and blurring. Recently developed data-driven correction techniques, capable of significantly mitigating these defects, are included in the reconstruction pipelines developed for the Human Connectome Project (HCP) driven by the NIH BRAIN initiative. In this case, however, corrections are derived from the original diffusion-weighted (DW) magnitude images affected by distortion and blurring. Considering the complexity of k-space deviations in the presence of time varying high spatial order eddy currents, distortion and blurring may not be fully reversed when relying on magnitude DW images only. An alternative approach, consisting of iteratively reconstructing DW images based on the actual magnetic field spatiotemporal evolution measured with a magnetic field monitoring camera, has been successfully implemented at 3T in single band dMRI (Wilm et al., 2017, 2015). In this study, we aim to demonstrate the efficacy of this eddy current correction method in the challenging context of HCP-style multiband (MB â€‹= â€‹2) dMRI protocol. The magnetic field evolution was measured during the EP-dMRI readout echo train with a field monitoring camera equipped with 16 19F NMR probes. The time variation of 0th, 1st and 2nd order spherical field harmonics were used to reconstruct DW images. Individual DW images reconstructed with and without field correction were compared. The impact of eddy current correction was evaluated by comparing the corresponding direction-averaged DW images and fractional anisotropy (FA) maps. 19F field monitoring data confirmed the existence of significant field deviations induced by the diffusion-encoding gradients, with variations depending on diffusion gradient amplitude and direction. In DW images reconstructed with the field correction, residual aliasing artifacts were reduced or eliminated, and when high b-values were applied, better gray/white matter delineation and sharper gyri contours were observed, indicating reduced signal blurring. The improvement in image quality further contributed to sharper contours and better gray/white matter delineation in mean DW images and FA maps. In conclusion, we demonstrate that up-to-2nd-order-eddy-current-induced field perturbation in multiband, in-plane accelerated HCP-style dMRI acquisition at 7T can be corrected by integrating the measured field evolution in image reconstruction.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/normas , Imagen Eco-Planar/normas , Procesamiento de Imagen Asistido por Computador/normas , Campos Magnéticos , Neuroimagen/normas , Adulto , Artefactos , Conectoma , Imagen de Difusión por Resonancia Magnética/métodos , Imagen Eco-Planar/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Neuroimagen/métodos , Proyectos Piloto , Prueba de Estudio Conceptual
15.
Magn Reson Med ; 84(4): 1947-1960, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32187742

RESUMEN

PURPOSE: Simultaneous multislab (SMSb) 4D flow MRI was developed and implemented at 7T for accelerated acquisition of the 3D blood velocity vector field in both carotid bifurcations. METHODS: SMSb was applied to 4D flow to acquire blood velocities in both carotid bifurcations in sagittal orientation using a local transmit/receive coil at 7T. B1+ transmit efficiency was optimized by B1+ shimming. SMSb 4D flow was obtained in 8 healthy subjects in single-band (SB) and multiband (MB) fashion. Additionally, MB data were retrospectively undersampled to simulate GRAPPA R = 2 (MB2_GRAPPA2), and both SB datasets were added to form an artificial MB dataset (SumSB). The band separation performance was quantified by signal leakage. Peak velocity and total flow values were calculated and compared to SB via intraclass correlation analysis (ICC). RESULTS: Clean slab separation was achieved yielding a mean signal leakage of 13% above the mean SB noise level. Mean total flow for MB2, SumSB, and MB_GRAPPA2 deviated less than 9% from the SB values. Peak velocities averaged over all vessels and subjects were 0.48 ± 0.11 m/s for SB, 0.47 ± 0.12 m/s for SumSB, 0.50 ± 0.13 m/s for MB2, and 0.53 ± 0.13 m/s for MB2_GRAPPA2. ICC revealed excellent absolute agreement and consistency of total flow for all methods compared to SB2. Peak velocity showed good to excellent agreement and consistency for SumSB and MB2 and MB2_GRAPPA2 method showed poor to excellent agreement and good to excellent consistency. CONCLUSION: Simultaneous multislab 4D Flow MRI allows accurate quantification of total flow and peak velocity while reducing scan times.


Asunto(s)
Angiografía por Resonancia Magnética , Imagen por Resonancia Magnética , Velocidad del Flujo Sanguíneo , Arterias Carótidas/diagnóstico por imagen , Humanos , Imagenología Tridimensional , Reproducibilidad de los Resultados , Estudios Retrospectivos
16.
Magn Reson Med ; 84(1): 289-303, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31846121

RESUMEN

PURPOSE: To investigate the feasibility of imaging the human torso and to evaluate the performance of several radiofrequency (RF) management strategies at 10.5T. METHODS: Healthy volunteers were imaged on a 10.5T whole-body scanner in multiple target anatomies, including the prostate, hip, kidney, liver, and heart. Phase-only shimming and spoke pulses were used to demonstrate their performance in managing the B1+ inhomogeneity present at 447 MHz. Imaging protocols included both qualitative and quantitative acquisitions to show the feasibility of imaging with different contrasts. RESULTS: High-quality images were acquired and demonstrated excellent overall contrast and signal-to-noise ratio. The experimental results matched well with predictions and suggested good translational capabilities of the RF management strategies previously developed at 7T. Phase-only shimming provided increased efficiency, but showed pronounced limitations in homogeneity, demonstrating the need for the increased degrees of freedom made possible through single- and multispoke RF pulse design. CONCLUSION: The first in-vivo human imaging was successfully performed at 10.5T using previously developed RF management strategies. Further improvement in RF coils, transmit chain, and full integration of parallel transmit functionality are needed to fully realize the benefits of 10.5T.


Asunto(s)
Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Magnética , Corazón , Humanos , Masculino , Ondas de Radio , Relación Señal-Ruido
17.
Magn Reson Med ; 84(1): 484-496, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31751499

RESUMEN

PURPOSE: The purpose of this study is to safely acquire the first human head images at 10.5T. METHODS: To ensure safety of subjects, we validated the electromagnetic simulation model of our coil. We obtained quantitative agreement between simulated and experimental B1+ and specific absorption rate (SAR). Using the validated coil model, we calculated radiofrequency power levels to safely image human subjects. We conducted all experiments and imaging sessions in a controlled radiofrequency safety lab and the whole-body 10.5T scanner in the Center for Magnetic Resonance Research. RESULTS: Quantitative agreement between the simulated and experimental results was obtained including S-parameters, B1+ maps, and SAR. We calculated peak 10 g average SAR using 4 different realistic human body models for a quadrature excitation and demonstrated that the peak 10 g SAR variation between subjects was less than 30%. We calculated safe power limits based on this set and used those limits to acquire T2 - and T2∗ -weighted images of human subjects at 10.5T. CONCLUSIONS: In this study, we acquired the first in vivo human head images at 10.5T using an 8-channel transmit/receive coil. We implemented and expanded a previously proposed workflow to validate the electromagnetic simulation model of the 8-channel transmit/receive coil. Using the validated coil model, we calculated radiofrequency power levels to safely image human subjects.


Asunto(s)
Imagen por Resonancia Magnética , Ondas de Radio , Simulación por Computador , Humanos , Fantasmas de Imagen
18.
IEEE Trans Microw Theory Tech ; 67(3): 1184-1196, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31749460

RESUMEN

This paper presents an investigation of methods for improving homogeneity inside various dielectric phantoms situated in a 10.5 T human-sized MRI. The transmit B1 ( B 1 + ) field is excited with a quadrature fed circular patch-probe and a 12 element capacitively-loaded microstrip array. Both simulations and measurements show improved homogeneity in a cylindrical water phantom, an inhomogeneous phantom (pineapple), and a NIST standard phantom. The simulations are performed using a full-wave finite-difference time-domain solver (Sim4Life) in order to find the B 1 + field distribution and compared to the gradient recalled echo image and efficiency result. For additional field uniformity, the wall electromagnetic boundary conditions are modified with a passive quadrifilar helix. Finally, these methods are applied in simulation to head imaging of an anatomically correct human body model (Duke, IT'IS Virtual Population) showing improved homogeneity and specific absorption rate for various excitations.

19.
Magn Reson Imaging ; 63: 258-266, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31425805

RESUMEN

Electrical properties of the brain tissues may yield useful biomarkers for neurological disorders and diseases, as well as contribute to safety assurance of ultra-high-field MRI. It has been reported that using B1 maps from a multi-channel RF coil, the spatial variation of the electrical properties can be robustly retrieved. The absolute electrical property values can then be obtained by spatial integration, given that an integration seed point is assigned. In this study, we propose to exploit automatically detected seed points based on tissue piece-wise homogeneity (Helmholtz equation) for spatial integration. Numerical simulations of a numerical brain model and experiments involving 12 healthy volunteers were performed to demonstrate its feasibility and robustness in various noisy conditions and head positions. For in vivo imaging, we consistently observed higher conductivity and permittivity values in the white and gray matter compared to tabulated ex vivo probe measurement results found in the literature, a discrepancy that may be attributed to ex vivo experimental constraints. Our results suggest that the proposed technique produces consistent brain electrical properties in vivo that may contribute to improving diagnostic and therapeutic decisions.


Asunto(s)
Mapeo Encefálico , Encéfalo/diagnóstico por imagen , Conductividad Eléctrica , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética , Adulto , Simulación por Computador , Sustancia Gris , Voluntarios Sanos , Humanos , Persona de Mediana Edad , Modelos Teóricos , Reconocimiento de Normas Patrones Automatizadas , Fantasmas de Imagen , Ondas de Radio , Tomografía , Adulto Joven
20.
Magn Reson Imaging ; 63: 274-279, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31446038

RESUMEN

INTRODUCTION: At ultrahigh field, local susceptibility induced hyperintensities are pronounced in brain areas close to air-tissue boundaries in the inferior frontal lobe and temporal lobes on T1w MPRAGE images. Resulting from incomplete inversion, these artefacts can introduce biases in brain volumetry and erroneously suggest the existence of local tissular anomaly. We propose a straightforward approach to eliminate these artefacts by applying a shift (ΔfIR) to the center frequency of the adiabatic inversion pulse while widening the bandwidth of the latter by shortening the pulse duration (ΔtIR). METHODS: An MPRAGE sequence was customized allowing to change the duration (standard: 10,240 µs) and center frequency of the hyperbolic secant inversion RF pulse (IR). All measurements were performed on a 7 T whole body scanner (Siemens, Erlangen, Germany). 13 healthy volunteers (7 female and 6 male, average age (SD) = 38 ±â€¯15 yrs) were recruited for the study, 3 of which were scanned for protocol optimization and the rest for performance evaluation. ΔB0 was mapped through the brain with a gradient echo sequence. The effects of ΔfIR and ΔtIR were studied separately and jointly to determine optimal parameter combinations to achieve the largest spatial extent of complete inversion throughout the brain. RESULTS: Applying a positive ΔfIR restored inversion efficiency in the inferior frontal and temporal lobes, but also introduced undesired hyperintensities in the anterior temporal lobes. Widening the bandwidth alone could also partially reduce hyperintensities in the frontal area but with a limited efficiency. By simultaneously applying a positive ΔfIR of 300 Hz and shortening ΔtIR by 40%, these artefacts were eliminated across the whole cerebrum. CONCLUSION: A robust elimination of susceptibility induced hyperintensities near air-tissue boundaries in T1w MPRAGE 7 T brain images is demonstrated. This technique only requires limited MR sequence modifications.


Asunto(s)
Mapeo Encefálico , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Neuroimagen , Adulto , Artefactos , Cerebro/diagnóstico por imagen , Femenino , Lóbulo Frontal/diagnóstico por imagen , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Lóbulo Temporal/diagnóstico por imagen , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...