Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Animals (Basel) ; 13(15)2023 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-37570321

RESUMEN

Crossbreeding forms part of Climate-Smart beef production and is one of the strategies to mitigate the effects of climate change. Two Nguni-sired and three Bonsmara-sired crossbred animals underwent whole genome sequencing. Following quality control and file preparation, the sequence data were investigated for genome-wide copy number variation (CNV) using the panelcn.MOPS tool. A total of 355 CNVs were identified in the crossbreds, of which 274 were unique in Bonsmara-sired crossbreds and 81 unique in the Nguni-sired crossbreds. Genes that differed in copy number in both crossbreds included genes related to growth (SCRN2, LOC109572916) and fertility-related factors (RPS28, LOC1098562432, LOC109570037). Genes that were present only in the Bonsmara-sired crossbreds included genes relating to lipid metabolism (MAF1), olfaction (LOC109569114), body size (HES7), immunity (LOC10957335, LOC109877039) and disease (DMBT1). Genes that were present only in the Nguni-sired crossbreds included genes relating to ketosis (HMBOX1) and amino acid transport (LOC109572916). Results of this study indicate that Nguni and Bonsmara cattle can be utilized in crossbreeding programs as they may enhance the presence of economically important traits associated with both breeds. This will produce crossbred animals that are good meat producers, grow faster, have high fertility, strong immunity and a better chance of producing in South Africa's harsh climate conditions. Ultimately, this study provides new genetic insights into the adaptability of Nguni and Bonsmara crossbred cattle.

2.
Pathogens ; 11(8)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-36014979

RESUMEN

The Fusarium fujikuroi species complex (FFSC) includes socioeconomically important pathogens that cause disease for numerous crops and synthesize a variety of secondary metabolites that can contaminate feedstocks and food. Here, we used comparative genomics to elucidate processes underlying the ability of pine-associated and grass-associated FFSC species to colonize tissues of their respective plant hosts. We characterized the identity, possible functions, evolutionary origins, and chromosomal positions of the host-range-associated genes encoded by the two groups of fungi. The 72 and 47 genes identified as unique to the respective genome groups were potentially involved in diverse processes, ranging from transcription, regulation, and substrate transport through to virulence/pathogenicity. Most genes arose early during the evolution of Fusarium/FFSC and were only subsequently retained in some lineages, while some had origins outside Fusarium. Although differences in the densities of these genes were especially noticeable on the conditionally dispensable chromosome of F. temperatum (representing the grass-associates) and F. circinatum (representing the pine-associates), the host-range-associated genes tended to be located towards the subtelomeric regions of chromosomes. Taken together, these results demonstrate that multiple mechanisms drive the emergence of genes in the grass- and pine-associated FFSC taxa examined. It also highlighted the diversity of the molecular processes potentially underlying niche-specificity in these and other Fusarium species.

3.
Front Genet ; 13: 909012, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35783284

RESUMEN

Climate change is a major influencing factor in beef production. The greenhouse gases produced from livestock production systems contribute to the overall greenhouse gas emissions. The aim of this study was to identify selection signatures within and between Nguni and Bonsmara cattle in relation to production and adaptation. For this purpose, genomic 150 K single nucleotide polymorphism data from Nguni (n = 231) and Bonsmara (n = 252) cattle in South Africa were used. Extended haplotype homozygosity (EHH) based analysis was executed within each population using integrated haplotype score (iHS). The R package rehh was used for detecting selection signatures across the two populations with cross population EHH (XP-EHH). Total of 121 regions of selection signatures were detected (p < 0.0001) in the Bonsmara and Nguni populations. Several genes relating to DNA methylation, heat stress, feed efficiency and nitrogen metabolism were detected within and between each population. These regions also included QTLs associated with residual feed intake, residual gain, carcass weight, stature and body weight in the Bonsmara, while QTLs associated with conception rate, shear force, tenderness score, juiciness, temperament, heat tolerance, feed efficiency and age at puberty were identified in Nguni. Based on the results of the study it is recommended that the Nguni and Bonsmara be utilized in crossbreeding programs as they have beneficial traits that may allow them to perform better in the presence of climate change. Results of this study coincide with Nguni and Bonsmara breed characteristics and performance, and furthermore support informative crossbreeding programs to enhance livestock productivity in South Africa.

4.
J Fungi (Basel) ; 7(3)2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33809900

RESUMEN

Terpenes represent the biggest group of natural compounds on earth. This large class of organic hydrocarbons is distributed among all cellular organisms, including fungi. The different classes of terpenes produced by fungi are mono, sesqui, di- and triterpenes, although triterpene ergosterol is the main sterol identified in cell membranes of these organisms. The availability of genomic data from members in the Ceratocystidaceae enabled the detection and characterization of the genes encoding the enzymes in the mevalonate and ergosterol biosynthetic pathways. Using a bioinformatics approach, fungal orthologs of sterol biosynthesis genes in nine different species of the Ceratocystidaceae were identified. Ergosterol and some of the intermediates in the pathway were also detected in seven species (Ceratocystis manginecans, C. adiposa, Huntiella moniliformis, Thielaviopsis punctulata, Bretziella fagacearum, Endoconidiophora polonica and Davidsoniella virescens), using gas chromatography-mass spectrometry analysis. The average ergosterol content differed among different genera of Ceratocystidaceae. We also identified all possible terpene related genes and possible biosynthetic clusters in the genomes used in this study. We found a highly conserved terpene biosynthesis gene cluster containing some genes encoding ergosterol biosynthesis enzymes in the analysed genomes. An additional possible terpene gene cluster was also identified in all of the Ceratocystidaceae. We also evaluated the sensitivity of the Ceratocystidaceae to a triazole fungicide that inhibits ergosterol synthesis. The results showed that different members of this family behave differently when exposed to different concentrations of triazole tebuconazole.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA