Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Psychopharmacol Neurosci ; 16(4): 449-460, 2018 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-30466217

RESUMEN

OBJECTIVE: Prior functional magnetic resonance imaging (fMRI) work has revealed that children/adolescents with disruptive behavior disorders (DBDs) show dysfunctional reward/non-reward processing of non-social reinforcements in the context of instrumental learning tasks. Neural responsiveness to social reinforcements during instrumental learning, despite the importance of this for socialization, has not yet been previously investigated. METHODS: Twenty-nine healthy children/adolescents and 19 children/adolescents with DBDs performed the fMRI social/non-social reinforcement learning task. Participants responded to random fractal image stimuli and received social and non-social rewards/non-rewards according to their accuracy. RESULTS: Children/adolescents with DBDs showed significantly reduced responses within the caudate and posterior cingulate cortex (PCC) to non-social (financial) rewards and social non-rewards (the distress of others). Connectivity analyses revealed that children/adolescents with DBDs have decreased positive functional connectivity between the ventral striatum (VST) and the ventromedial prefrontal cortex (vmPFC) seeds and the lateral frontal cortex in response to reward relative to non-reward, irrespective of its sociality. In addition, they showed decreased positive connectivity between the vmPFC seed and the amygdala in response to non-reward relative to reward. CONCLUSION: These data indicate compromised reinforcement processing of both non-social rewards and social non-rewards in children/adolescents with DBDs within core regions for instrumental learning and reinforcement-based decision- making (caudate and PCC). In addition, children/adolescents with DBDs show dysfunctional interactions between the VST, vmPFC, and lateral frontal cortex in response to rewarded instrumental actions potentially reflecting disruptions in attention to rewarded stimuli.

2.
Brain Res ; 1689: 89-97, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29625117

RESUMEN

INTRODUCTION: Models of attention suggest that endogenous and exogenous factors can bias attention. However, recent data suggest that reward can also enhance attention towards relevant stimulus features as a function of involuntary biases. In this study, we utilized the additional singleton task to determine the neural circuitry that biases perceptual processing as a function of reward history. METHODS: Participants searched for a unique shape amongst an array of differently shaped objects. All shapes, including the target shape, had the same color except one distractor shape. Participants randomly received a low or high reward after correct trials. From one trial to the next, target colors could stay the same or swap with the distractor color. Interestingly, and despite the irrelevancy of reward magnitude for task accuracy, the difference in reaction time between swap and non-swap trials usually is more pronounced following a high compared to a low reward. RESULTS: In the current study, we showed that reward modulated attention is larger for individuals with enhanced reward magnitude sensitivity in the ventral striatum. In addition, connectivity data shows that ventral striatum was more positively connected with visual cortex during high reward non-swap trials compared to high reward swap trials for participants showing stronger reward modulated attention. CONCLUSIONS: This suggests that involuntary reward modulated attention might be implemented by direct influences of the ventral striatum on visual cortex.


Asunto(s)
Sesgo Atencional/fisiología , Recompensa , Estriado Ventral/fisiología , Corteza Visual/fisiología , Percepción Visual/fisiología , Adulto , Anticipación Psicológica/fisiología , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiología , Tiempo de Reacción , Memoria Implícita/fisiología , Estriado Ventral/diagnóstico por imagen , Corteza Visual/diagnóstico por imagen
3.
Curr Top Behav Neurosci ; 38: 117-136, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-28439771

RESUMEN

Early adverse experiences are associated with heighted vulnerability for stress-related psychopathology across the lifespan. While extensive work has investigated the effects of early adversity on neurobiology in adulthood, developmental approaches can provide further insight on the neurobiological mechanisms that link early experiences and long-term mental health outcomes. In the current review, we discuss the role of emotion regulation circuitry implicated in stress-related psychopathology from a developmental and transdiagnostic perspective. We highlight converging evidence suggesting that multiple forms of early adverse experiences impact the functional development of amygdala-prefrontal circuitry. Next, we discuss how adversity-induced alterations in amygdala-prefrontal development are associated with symptoms of emotion dysregulation and psychopathology. Additionally, we discuss potential mechanisms through which protective factors may buffer the effects of early adversity on amygdala-prefrontal development to confer more adaptive long-term outcomes. Finally, we consider limitations of the existing literature and make suggestions for future longitudinal and translational research that can better elucidate the mechanisms linking early adversity, neurobiology, and emotional phenotypes. Together, these findings may provide further insight into the neuro-developmental mechanisms underlying the emergence of adversity-related emotional disorders and facilitate the development of targeted interventions that can ameliorate risk for psychopathology in youth exposed to early life stress.


Asunto(s)
Neurobiología , Psicopatología , Amígdala del Cerebelo , Humanos , Corteza Prefrontal , Estrés Psicológico
4.
Clin Psychopharmacol Neurosci ; 15(4): 369-381, 2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-29073749

RESUMEN

OBJECTIVE: In the current study we investigated neurodevelopmental changes in response to social and non-social reinforcement. METHODS: Fifty-three healthy participants including 16 early adolescents (age, 10-15 years), 16 late adolescents (age, 15-18 years), and 21 young adults (age, 21-25 years) completed a social/non-social reward learning task while undergoing functional magnetic resonance imaging. Participants responded to fractal image stimuli and received social or non-social reward/non-rewards according to their accuracy. ANOVAs were conducted on both the blood oxygen level dependent response data and the product of a context-dependent psychophysiological interaction (gPPI) analysis involving ventromedial prefrontal cortex (vmPFC) and bilateral insula cortices as seed regions. RESULTS: Early adolescents showed significantly increased activation in the amygdala and anterior insula cortex in response to non-social monetary rewards relative to both social reward/non-reward and monetary non-rewards compared to late adolescents and young adults. In addition, early adolescents showed significantly more positive connectivity between the vmPFC/bilateral insula cortices seeds and other regions implicated in reinforcement processing (the amygdala, posterior cingulate cortex, insula cortex, and lentiform nucleus) in response to non-reward and especially social non-reward, compared to late adolescents and young adults. CONCLUSION: It appears that early adolescence may be marked by: (i) a selective increase in responsiveness to non-social, relative to social, rewards; and (ii) enhanced, integrated functioning of reinforcement circuitry for non-reward, and in particular, with respect to posterior cingulate and insula cortices, for social non-reward.

5.
Dev Psychopathol ; 29(2): 519-533, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28401841

RESUMEN

Institutional caregiving is associated with significant deviations from species-expected caregiving, altering the normative sequence of attachment formation and placing children at risk for long-term emotional difficulties. However, little is known about factors that can promote resilience following early institutional caregiving. In the current study, we investigated how adaptations in affective processing (i.e., positive valence bias) and family-level protective factors (i.e., secure parent-child relationships) moderate risk for internalizing symptoms in previously institutionalized (PI) youth. Children and adolescents with and without a history of institutional care performed a laboratory-based affective processing task and self-reported measures of parent-child relationship security. PI youth were more likely than comparison youth to show positive valence biases when interpreting ambiguous facial expressions. Both positive valence bias and parent-child relationship security moderated the association between institutional care and parent-reported internalizing symptoms, such that greater positive valence bias and more secure parent-child relationships predicted fewer symptoms in PI youth. However, when both factors were tested concurrently, parent-child relationship security more strongly moderated the link between PI status and internalizing symptoms. These findings suggest that both individual-level adaptations in affective processing and family-level factors of secure parent-child relationships may ameliorate risk for internalizing psychopathology following early institutional caregiving.


Asunto(s)
Adaptación Psicológica/fisiología , Síntomas Afectivos/psicología , Niño Institucionalizado/psicología , Emociones/fisiología , Relaciones Padres-Hijo , Adolescente , Adopción/psicología , Niño , Expresión Facial , Reconocimiento Facial , Femenino , Humanos , Masculino , Factores Protectores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...