Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biochem Biophys Res Commun ; 681: 152-156, 2023 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-37776746

RESUMEN

Peroxidasin (PXDN) is an extracellular peroxidase, which generates hypobromous acid to form sulfilimine cross-links within collagen IV networks. We have previously demonstrated that mouse and human renal basement membranes (BM) are enriched in bromine due to PXDN-dependent post-translational bromination of protein tyrosine residues. The goal of the present study was identification of specific brominated sites within renal BM. A comprehensive analysis of brominated proteome of mouse glomerular matrix had been performed using liquid chromatography-tandem mass spectrometry. We found that out of over 200 identified proteins, only three were detectably brominated, each containing a single distinct brominated tyrosine site i.e., Tyr-1485 in collagen IV α2 chain, Tyr-292 in TINAGL1 and Tyr-664 in nidogen-2. To explain this highly selective bromination, we proposed that these proteins interact with PXDN within the glomerular matrix. Experiments using purified proteins demonstrated that both TINAGL1 and nidogen-2 can compete with PXDN for binding to collagen IV and that TINAGL1 can directly interact with PXDN. We propose that a protein complex, including PXDN, TINAGL1, nidogen-2 and collagen IV, may exist in renal BM.

2.
JCI Insight ; 7(24)2022 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-36326835

RESUMEN

Vasopressin has traditionally been thought to be produced by the neurohypophyseal system and then released into the circulation where it regulates water homeostasis. The questions of whether vasopressin could be produced outside of the brain and if the kidney could be a source of vasopressin are raised by the syndrome of inappropriate antidiuretic hormone secretion (vasopressin). We found that mouse and human kidneys expressed vasopressin mRNA. Using an antibody that detects preprovasopressin, we found that immunoreactive preprovasopressin protein was found in mouse and human kidneys. Moreover, we found that murine collecting duct cells made biologically active vasopressin, which increased in response to NaCl-mediated hypertonicity, and that water restriction increased the abundance of kidney-derived vasopressin mRNA and protein expression in mouse kidneys. Thus, we provide evidence of biologically active production of kidney-derived vasopressin in kidney tubular epithelial cells.


Asunto(s)
Túbulos Renales Colectores , Ratones , Humanos , Animales , Túbulos Renales Colectores/metabolismo , Cloruro de Sodio/farmacología , Cloruro de Sodio/metabolismo , Vasopresinas/metabolismo , Agua/metabolismo , ARN Mensajero/metabolismo
3.
J Cell Biol ; 219(9)2020 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-32678881

RESUMEN

Excessive accumulation of collagen leads to fibrosis. Integrin α1ß1 (Itgα1ß1) prevents kidney fibrosis by reducing collagen production through inhibition of the EGF receptor (EGFR) that phosphorylates cytoplasmic and nuclear proteins. To elucidate how the Itgα1ß1/EGFR axis controls collagen synthesis, we analyzed the levels of nuclear tyrosine phosphorylated proteins in WT and Itgα1-null kidney cells. We show that the phosphorylation of the RNA-DNA binding protein fused in sarcoma (FUS) is higher in Itgα1-null cells. FUS contains EGFR-targeted phosphorylation sites and, in Itgα1-null cells, activated EGFR promotes FUS phosphorylation and nuclear translocation. Nuclear FUS binds to the collagen IV promoter, commencing gene transcription that is reduced by inhibiting EGFR, down-regulating FUS, or expressing FUS mutated in the EGFR-targeted phosphorylation sites. Finally, a cell-penetrating peptide that inhibits FUS nuclear translocation reduces FUS nuclear content and collagen IV transcription. Thus, EGFR-mediated FUS phosphorylation regulates FUS nuclear translocation and transcription of a major profibrotic collagen gene. Targeting FUS nuclear translocation offers a new antifibrotic therapy.


Asunto(s)
Núcleo Celular/metabolismo , Fibrosis/metabolismo , Fosforilación/fisiología , Proteína FUS de Unión a ARN/metabolismo , Transducción de Señal/fisiología , Animales , Secuencia de Bases , Línea Celular , Núcleo Celular/genética , Colágeno/genética , Colágeno/metabolismo , Regulación hacia Abajo/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Fibrosis/genética , Células HEK293 , Humanos , Integrina alfa1beta1/genética , Integrina alfa1beta1/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Fosforilación/genética , Regiones Promotoras Genéticas/genética , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , Proteína FUS de Unión a ARN/genética , Transducción de Señal/genética , Transcripción Genética/genética
4.
J Am Soc Nephrol ; 30(9): 1605-1624, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31383731

RESUMEN

BACKGROUND: The discoidin domain receptor 1 (DDR1) is activated by collagens, upregulated in injured and fibrotic kidneys, and contributes to fibrosis by regulating extracellular matrix production, but how DDR1 controls fibrosis is poorly understood. DDR1 is a receptor tyrosine kinase (RTK). RTKs can translocate to the nucleus via a nuclear localization sequence (NLS) present on the receptor itself or a ligand it is bound to. In the nucleus, RTKs regulate gene expression by binding chromatin directly or by interacting with transcription factors. METHODS: To determine whether DDR1 translocates to the nucleus and whether this event is mediated by collagen-induced DDR1 activation, we generated renal cells expressing wild-type or mutant forms of DDR1 no longer able to bind collagen. Then, we determined the location of the DDR1 upon collagen stimulation. Using both biochemical assays and immunofluorescence, we analyzed the steps involved in DDR1 nuclear translocation. RESULTS: We show that although DDR1 and its natural ligand, collagen, lack an NLS, DDR1 is present in the nucleus of injured human and mouse kidney proximal tubules. We show that DDR1 nuclear translocation requires collagen-mediated receptor activation and interaction of DDR1 with SEC61B, a component of the Sec61 translocon, and nonmuscle myosin IIA and ß-actin. Once in the nucleus, DDR1 binds to chromatin to increase the transcription of collagen IV, a major collagen upregulated in fibrosis. CONCLUSIONS: These findings reveal a novel mechanism whereby activated DDR1 translates to the nucleus to regulate synthesis of profibrotic molecules.


Asunto(s)
Colágeno Tipo IV/genética , Colágeno Tipo I/metabolismo , Receptor con Dominio Discoidina 1/metabolismo , Túbulos Renales Proximales/metabolismo , Actinas/metabolismo , Lesión Renal Aguda/metabolismo , Animales , Transporte Biológico , Línea Celular , Núcleo Celular , Cromatina/metabolismo , Colágeno Tipo I/farmacología , Colágeno Tipo IV/metabolismo , Receptor con Dominio Discoidina 1/genética , Humanos , Túbulos Renales Proximales/patología , Masculino , Ratones , Cadenas Pesadas de Miosina/metabolismo , Señales de Localización Nuclear , Proteína 4 de Unión a Retinoblastoma/metabolismo , Canales de Translocación SEC/metabolismo , Transcripción Genética
5.
J Biol Chem ; 292(41): 16970-16982, 2017 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-28864775

RESUMEN

Lysyl oxidase-like-2 (LOXL2) is an enzyme secreted into the extracellular matrix that crosslinks collagens by mediating oxidative deamination of lysine residues. Our previous work demonstrated that this enzyme crosslinks the 7S domain, a structural domain that stabilizes collagen IV scaffolds in the basement membrane. Despite its relevant role in extracellular matrix biosynthesis, little is known about the structural requirements of LOXL2 that enable collagen IV crosslinking. In this study, we demonstrate that LOXL2 is processed extracellularly by serine proteases, generating a 65-kDa form lacking the first two scavenger receptor cysteine-rich domains. Site-specific mutagenesis to prevent proteolytic processing generated a full-length enzyme that is active in vitro toward a soluble substrate, but fails to crosslink insoluble collagen IV within the extracellular matrix. In contrast, the processed form of LOXL2 binds to collagen IV and crosslinks the 7S domain. Together, our data demonstrate that proteolytic processing is an important event that allows LOXL2-mediated crosslinking of basement membrane collagen IV.


Asunto(s)
Aminoácido Oxidorreductasas/metabolismo , Membrana Basal/metabolismo , Colágeno Tipo IV/metabolismo , Matriz Extracelular/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Proteolisis , Aminoácido Oxidorreductasas/genética , Colágeno Tipo IV/genética , Matriz Extracelular/genética , Células HEK293 , Humanos , Mutagénesis Sitio-Dirigida , Dominios Proteicos
6.
Protein Sci ; 26(11): 2151-2161, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28845540

RESUMEN

Collagen IV scaffolds assemble through an intricate pathway that begins intracellularly and is completed extracellularly. Multiple intracellular enzymes act in concert to assemble collagen IV protomers, the building blocks of collagen IV scaffolds. After being secreted from cells, protomers are activated to initiate oligomerization, forming insoluble networks that are structurally reinforced with covalent crosslinks. Within these networks, embedded binding sites along the length of the protomer lead to the "decoration" of collagen IV triple helix with numerous functional molecules. We refer to these networks as "smart" scaffolds, which as a component of the basement membrane enable the development and function of multicellular tissues in all animal phyla. In this review, we present key molecular mechanisms that drive the assembly of collagen IV smart scaffolds.


Asunto(s)
Aminoácido Oxidorreductasas/genética , Antígenos de Neoplasias/genética , Colágeno Tipo IV/química , Matriz Extracelular/metabolismo , Subunidades de Proteína/química , Receptores de Interleucina-1/genética , Secuencias de Aminoácidos , Aminoácido Oxidorreductasas/metabolismo , Animales , Antígenos de Neoplasias/metabolismo , Membrana Basal/metabolismo , Membrana Basal/ultraestructura , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Células Eucariotas/metabolismo , Células Eucariotas/ultraestructura , Matriz Extracelular/ultraestructura , Regulación de la Expresión Génica , Humanos , Peroxidasas , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Secundaria de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Receptores de Interleucina-1/metabolismo
7.
J Biol Chem ; 291(50): 25999-26012, 2016 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-27770022

RESUMEN

The 7S dodecamer is recognized as an important structural cross-linking domain of collagen IV networks that provide mechanical stability to basement membranes, a specialized form of extracellular matrix essential for the development and maintenance of tissue architecture. Although the 7S dodecamer is stabilized by covalent cross-linking, the molecular mechanism by which such cross-links are formed has not been revealed. Here, we aimed to identify the enzyme(s) that cross-links the 7S dodecamer and characterize its expression in the kidney glomerulus. Pharmacological inhibition of candidate extracellular matrix enzymes revealed that lysyl oxidase activity is required for cross-linking of 7S polypeptides. Among all lysyl oxidase family members, lysyl oxidase-like-2 (LOXL2) was identified as the isoform cross-linking collagen IV in mouse embryonal PFHR-9 cells. Biochemical analyses revealed that LOXL2 readily promoted the formation of lysyl-derived cross-links in the 7S dodecamer but not in the NC1 domain. We also established that LOXL2 is the main lysyl oxidase family member present in the glomerular extracellular matrix. Altogether, we demonstrate that LOXL2 is a novel component of the molecular machinery that forms cross-linked collagen IV networks, which are essential for glomerular basement membrane stability and molecular ultrafiltration function.


Asunto(s)
Aminoácido Oxidorreductasas/metabolismo , Colágeno Tipo IV/metabolismo , Matriz Extracelular/metabolismo , Membrana Basal Glomerular/metabolismo , Aminoácido Oxidorreductasas/genética , Animales , Colágeno Tipo IV/genética , Matriz Extracelular/genética , Células HEK293 , Humanos , Ratones
8.
J Proteome Res ; 15(1): 245-58, 2016 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-26593852

RESUMEN

Collagen IV is the main structural protein that provides a scaffold for assembly of basement membrane proteins. Posttranslational modifications such as hydroxylation of proline and lysine and glycosylation of lysine are essential for the functioning of collagen IV triple-helical molecules. These modifications are highly abundant posing a difficult challenge for in-depth characterization of collagen IV using conventional proteomics approaches. Herein, we implemented an integrated pipeline combining high-resolution mass spectrometry with different fragmentation techniques and an optimized bioinformatics workflow to study posttranslational modifications in mouse collagen IV. We achieved 82% sequence coverage for the α1 chain, mapping 39 glycosylated hydroxylysine, 148 4-hydroxyproline, and seven 3-hydroxyproline residues. Further, we employed our pipeline to map the modifications on human collagen IV and achieved 85% sequence coverage for the α1 chain, mapping 35 glycosylated hydroxylysine, 163 4-hydroxyproline, and 14 3-hydroxyproline residues. Although lysine glycosylation heterogeneity was observed in both mouse and human, 21 conserved sites were identified. Likewise, five 3-hydroxyproline residues were conserved between mouse and human, suggesting that these modification sites are important for collagen IV function. Collectively, these are the first comprehensive maps of hydroxylation and glycosylation sites in collagen IV, which lay the foundation for dissecting the key role of these modifications in health and disease.


Asunto(s)
Membrana Basal/metabolismo , Colágeno Tipo IV/metabolismo , Procesamiento Proteico-Postraduccional , Secuencia de Aminoácidos , Animales , Línea Celular , Cromatografía de Fase Inversa , Colágeno Tipo IV/química , Colágeno Tipo IV/aislamiento & purificación , Glicosilación , Humanos , Hidroxilación , Cápsula del Cristalino/metabolismo , Ratones , Datos de Secuencia Molecular , Espectrometría de Masas en Tándem
9.
J Clin Invest ; 124(8): 3295-310, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24983314

RESUMEN

Tubulointerstitial fibrosis underlies all forms of end-stage kidney disease. TGF-ß mediates both the development and the progression of kidney fibrosis through binding and activation of the serine/threonine kinase type II TGF-ß receptor (TßRII), which in turn promotes a TßRI-mediated SMAD-dependent fibrotic signaling cascade. Autophosphorylation of serine residues within TßRII is considered the principal regulatory mechanism of TßRII-induced signaling; however, there are 5 tyrosine residues within the cytoplasmic tail that could potentially mediate TßRII-dependent SMAD activation. Here, we determined that phosphorylation of tyrosines within the TßRII tail was essential for SMAD-dependent fibrotic signaling within cells of the kidney collecting duct. Conversely, the T cell protein tyrosine phosphatase (TCPTP) dephosphorylated TßRII tail tyrosine residues, resulting in inhibition of TßR-dependent fibrotic signaling. The collagen-binding receptor integrin α1ß1 was required for recruitment of TCPTP to the TßRII tail, as mice lacking this integrin exhibited impaired TCPTP-mediated tyrosine dephosphorylation of TßRII that led to severe fibrosis in a unilateral ureteral obstruction model of renal fibrosis. Together, these findings uncover a crosstalk between integrin α1ß1 and TßRII that is essential for TßRII-mediated SMAD activation and fibrotic signaling pathways.


Asunto(s)
Integrina alfa1beta1/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Proteínas Smad/metabolismo , Animales , Colágeno/biosíntesis , Transición Epitelial-Mesenquimal , Fibrosis , Integrina alfa1/genética , Integrina alfa1/metabolismo , Riñón/metabolismo , Riñón/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Proteínas Serina-Treonina Quinasas/química , Proteína Tirosina Fosfatasa no Receptora Tipo 2/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/química , Transducción de Señal , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Tirosina/química , Obstrucción Ureteral/metabolismo , Obstrucción Ureteral/patología
10.
J Biol Chem ; 289(37): 25601-10, 2014 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-25006246

RESUMEN

Collagen IV is a family of 6 chains (α1-α6), that form triple-helical protomers that assemble into supramolecular networks. Two distinct networks with chain compositions of α121 and α345 have been established. These oligomerize into separate α121 and α345 networks by a homotypic interaction through their trimeric noncollagenous (NC1) domains, forming α121 and α345 NC1 hexamers, respectively. These are stabilized by novel sulfilimine (-S=N-) cross-links, a covalent cross-link that forms between Met(93) and Hyl(211) at the trimer-trimer interface. A third network with a composition of α1256 has been proposed, but its supramolecular organization has not been established. In this study we investigated the supramolecular organization of this network by determining the chain identity of sulfilimine-cross-linked NC1 domains derived from the α1256 NC1 hexamer. High resolution mass spectrometry analyses of peptides revealed that sulfilimine bonds specifically cross-link α1 to α5 and α2 to α6 NC1 domains, thus providing the spatial orientation between interacting α121 and α565 trimers. Using this information, we constructed a three-dimensional homology model in which the α565 trimer shows a good chemical and structural complementarity to the α121 trimer. Our studies provide the first chemical evidence for an α565 protomer and its heterotypic interaction with the α121 protomer. Moreover, our findings, in conjunction with our previous studies, establish that the six collagen IV chains are organized into three canonical protomers α121, α345, and α565 forming three distinct networks: α121, α345, and α121-α565, each of which is stabilized by sulfilimine bonds between their C-terminal NC1 domains.


Asunto(s)
Colágeno Tipo IV/química , Mapas de Interacción de Proteínas , Subunidades de Proteína/química , Secuencia de Aminoácidos , Animales , Aorta/química , Membrana Basal , Bovinos , Colágeno Tipo IV/metabolismo , Colágeno Tipo IV/ultraestructura , Lisina/química , Espectrometría de Masas , Metionina/química , Conformación Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína
11.
Proc Natl Acad Sci U S A ; 111(1): 331-6, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24344311

RESUMEN

Basement membrane, a specialized ECM that underlies polarized epithelium of eumetazoans, provides signaling cues that regulate cell behavior and function in tissue genesis and homeostasis. A collagen IV scaffold, a major component, is essential for tissues and dysfunctional in several diseases. Studies of bovine and Drosophila tissues reveal that the scaffold is stabilized by sulfilimine chemical bonds (S = N) that covalently cross-link methionine and hydroxylysine residues at the interface of adjoining triple helical protomers. Peroxidasin, a heme peroxidase embedded in the basement membrane, produces hypohalous acid intermediates that oxidize methionine, forming the sulfilimine cross-link. We explored whether the sulfilimine cross-link is a fundamental requirement in the genesis and evolution of epithelial tissues by determining its occurrence and evolutionary origin in Eumetazoa and its essentiality in zebrafish development; 31 species, spanning 11 major phyla, were investigated for the occurrence of the sulfilimine cross-link by electrophoresis, MS, and multiple sequence alignment of de novo transcriptome and available genomic data for collagen IV and peroxidasin. The results show that the cross-link is conserved throughout Eumetazoa and arose at the divergence of Porifera and Cnidaria over 500 Mya. Also, peroxidasin, the enzyme that forms the bond, is evolutionarily conserved throughout Metazoa. Morpholino knockdown of peroxidasin in zebrafish revealed that the cross-link is essential for organogenesis. Collectively, our findings establish that the triad-a collagen IV scaffold with sulfilimine cross-links, peroxidasin, and hypohalous acids-is a primordial innovation of the ECM essential for organogenesis and tissue evolution.


Asunto(s)
Membrana Basal/metabolismo , Evolución Biológica , Iminas/química , Compuestos de Azufre/química , Secuencia de Aminoácidos , Animales , Colágeno Tipo IV/química , Reactivos de Enlaces Cruzados/química , Drosophila melanogaster , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/química , Hemo/química , Espectrometría de Masas , Datos de Secuencia Molecular , Péptidos/química , Peroxidasa/química , Peroxidasas/química , Estructura Terciaria de Proteína , Análisis de Secuencia de ARN , Homología de Secuencia de Aminoácido , Pez Cebra , Peroxidasina
12.
Nat Chem Biol ; 8(9): 784-90, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22842973

RESUMEN

Collagen IV comprises the predominant protein network of basement membranes, a specialized extracellular matrix, which underlie epithelia and endothelia. These networks assemble through oligomerization and covalent crosslinking to endow mechanical strength and shape cell behavior through interactions with cell-surface receptors. A recently discovered sulfilimine (S=N) bond between a methionine sulfur and hydroxylysine nitrogen reinforces the collagen IV network. We demonstrate that peroxidasin, an enzyme found in basement membranes, catalyzes formation of the sulfilimine bond. Drosophila peroxidasin mutants have disorganized collagen IV networks and torn visceral muscle basement membranes, pointing to a critical role for the enzyme in tissue biogenesis. Peroxidasin generates hypohalous acids as reaction intermediates, suggesting a paradoxically anabolic role for these usually destructive oxidants. This work highlights sulfilimine bond formation as what is to our knowledge the first known physiologic function for peroxidasin, a role for hypohalous oxidants in tissue biogenesis, and a possible role for peroxidasin in inflammatory diseases.


Asunto(s)
Ácidos/química , Proteínas de la Matriz Extracelular/química , Iminas/química , Peroxidasa/química , Animales , Catálisis , Colágeno Tipo IV/química , Drosophila/química , Peroxidasina
13.
J Biol Chem ; 283(33): 22737-48, 2008 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-18499662

RESUMEN

The detailed structural basis for the cryptic nature (crypticity) of a B cell epitope harbored by an autoantigen is unknown. Because the immune system may be ignorant of the existence of such "cryptic" epitopes, their exposure could be an important feature in autoimmunity. Here we investigated the structural basis for the crypticity of the epitopes of the Goodpasture autoantigen, the alpha3alpha4alpha5 noncollagenous-1 (NC1) hexamer, a globular domain that connects two triple-helical molecules of the alpha3alpha4alpha5 collagen IV network. The NC1 hexamer occurs in two isoforms as follows: the M-isoform composed of monomer subunits in which the epitopes are accessible to autoantibodies, and the D-isoform composed of both monomer and dimer subunits in which the epitopes are cryptic. The D-isoform was characterized with respect to quaternary structure, as revealed by mass spectrometry of dimer subunits, homology modeling, and molecular dynamics simulation. The results revealed that the D-isoform contains two kinds of cross-links as follows: S-hydroxylysyl-methionine and S-lysyl-methionine cross-links, which stabilize the alpha3alpha5-heterodimers and alpha4alpha4-homodimers, respectively. Construction and analysis of a three-dimensional model of the D-isoform of the alpha3alpha4alpha5 NC1 hexamer revealed that crypticity is a consequence of the following: (a) sequestration of key residues between neighboring subunits that are stabilized by domain-swapping interactions, and (b) by cross-linking of subunits at the trimer-trimer interface, which stabilizes the structural integrity of the NC1 hexamer and protects against binding of autoantibodies. The sequestrated epitopes and cross-linked subunits represent a novel structural mechanism for conferring immune privilege at the level of quaternary structure. Perturbation of the quaternary structure may be a key factor in the etiology of Goodpasture disease.


Asunto(s)
Enfermedad por Anticuerpos Antimembrana Basal Glomerular/inmunología , Autoantígenos/inmunología , Colágeno Tipo IV/inmunología , Secuencia de Aminoácidos , Autoantígenos/química , Colágeno Tipo IV/química , Secuencia Conservada , Reactivos de Enlaces Cruzados , Dimerización , Epítopos de Linfocito B/inmunología , Humanos , Datos de Secuencia Molecular , Estructura Cuaternaria de Proteína
14.
J Biol Chem ; 280(32): 29300-10, 2005 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-15951440

RESUMEN

Collagen IV networks are present in all metazoans as components of basement membranes that underlie epithelia. They are assembled by the oligomerization of triple-helical protomers, composed of three alpha-chains. The trimeric noncollagenous domains (NC1) of each protomer interact forming a hexamer structure. Upon exposure to acidic pH or denaturants, the hexamer dissociates into monomer and dimer subunits, the latter reflect distinct interactions that reinforce/cross-link the quaternary structure of hexamer. Recently, the cross-link site of the alpha1alpha1alpha2 network was identified, on the basis of x-ray crystal structures at 1.9-A resolution, in which the side chains of Met93 and Lys211 were proposed to be connected by a novel thioether bond (Than, M. E., Henrich, S., Huber, R., Ries, A., Mann, K., Kuhn, K., Timpl, R., Bourenkov, G. P., Bartunik, H. D., and Bode, W. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 6607-6612); however, at the higher resolution of 1.5 A, we found no evidence for this cross-link (Vanacore, R. M., Shanmugasundararaj, S., Friedman, D. B., Bondar, O., Hudson, B. G., and Sundaramoorthy, M. (2004) J. Biol. Chem. 279, 44723-44730). Given this discrepancy in crystallographic findings, we sought chemical evidence for the location and nature of the reinforcement/cross-link site. Trypsin digestion of monomer and dimer subunits excised a approximately 5,000-Da complex that distinguished dimers from monomers; the complex was characterized by mass spectrometry, Edman degradation, and amino acid composition analyses. The tryptic complex, composed of two peptides of 44 residues derived from two alpha1 NC1 monomers, contained Met93 and Lys211 post-translationally modified to hydroxylysine (Hyl211). Truncation of the tryptic complex with post-proline endopeptidase reduced its size to 14 residues to facilitate characterization by tandem mass spectrometry, which revealed a covalent linkage between Met93 and Hyl211. The novel cross-link, termed S-hydroxylysyl-methionine, reflects at least two post-translational events in its formation: the hydroxylation of Lys211 to Hyl211 within the NC1 domain during the biosynthesis of alpha-chains and the connection of Hyl211 to Met93 between the trimeric NC1 domains of two adjoining triple-helical protomers, reinforcing the stability of collagen IV networks.


Asunto(s)
Colágeno Tipo IV/química , Reactivos de Enlaces Cruzados/farmacología , Hidroxilisina/química , Lisina/química , Metionina/química , Secuencia de Aminoácidos , Animales , Bovinos , Cristalografía por Rayos X , Dimerización , Ditiotreitol/farmacología , Espectrometría de Masas , Modelos Moleculares , Datos de Secuencia Molecular , Placenta/metabolismo , Prolina/química , Unión Proteica , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Análisis de Secuencia de Proteína , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Tripsina/química , Tripsina/farmacología
15.
J Biol Chem ; 279(43): 44723-30, 2004 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-15299013

RESUMEN

Collagen IV networks are present in all metazoa and underlie epithelia as a component of basement membranes. The networks are essential for tissue function and are defective in disease. They are assembled by the oligomerization of triple-helical protomers that are linked end-to-end. At the C terminus, two protomers are linked head-to-head by interactions of their trimeric noncollagenous domains, forming a hexamer structure. This linkage in the alpha1.alpha2 network is stabilized by a putative covalent Met-Lys cross-link between the trimer-trimer interface (Than, M. E., Henrich, S., Huber, R., Ries, A., Mann, K., Kuhn, K., Timpl, R., Bourenkov, G. P., Bartunik, H. D., and Bode, W. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 6607-6612) forming a nonreducible dimer that connects the hexamer. In the present study, this cross-link was further investigated by: (a) comparing the 1.5-A resolution crystal structures of the alpha1.alpha2 hexamers from bovine placenta and lens capsule basement membranes, (b) mass spectrometric analysis of monomer and nonreducible dimer subunits of placenta basement membrane hexamers, and (c) hexamer dissociation/re-association studies. The findings rule out the novel Met-Lys cross-link, as well as other covalent cross-links, but establish that the nonreducible dimer is an inherent structural feature of a subpopulation of hexamers. The dimers reflect the reinforced stabilization, by noncovalent forces, of the connection between two adjoining protomers of a network. The reinforcement extends to other types of collagen IV networks, and it underlies the cryptic nature of a B-cell epitope of the alpha3.alpha4.alpha5 hexamer, implicating the stabilization event in the etiology and pathogenesis of Goodpasture autoimmune disease.


Asunto(s)
Colágeno Tipo IV/química , Animales , Linfocitos B/metabolismo , Membrana Basal/metabolismo , Sitios de Unión , Bovinos , Cromatografía Líquida de Alta Presión , Colágeno Tipo IV/metabolismo , Cristalografía por Rayos X , Dimerización , Electrones , Epítopos/química , Enlace de Hidrógeno , Iones , Cristalino/metabolismo , Lisina/química , Espectrometría de Masas , Metales/química , Metionina/química , Modelos Moleculares , Péptidos/química , Placenta/metabolismo , Potasio/química , Regiones Promotoras Genéticas , Conformación Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Factores de Tiempo , Tripsina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...