Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(44): e2123426119, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36279446

RESUMEN

The brain mechanisms of memory consolidation remain elusive. Here, we examine blood-oxygen-level-dependent (BOLD) correlates of image recognition through the scope of multiple influential systems consolidation theories. We utilize the longitudinal Natural Scenes Dataset, a 7-Tesla functional magnetic resonance imaging human study in which ∼135,000 trials of image recognition were conducted over the span of a year among eight subjects. We find that early- and late-stage image recognition associates with both medial temporal lobe (MTL) and visual cortex when evaluating regional activations and a multivariate classifier. Supporting multiple-trace theory (MTT), parts of the MTL activation time course show remarkable fit to a 20-y-old MTT time-dynamical model predicting early trace intensity increases and slight subsequent interference (R2 > 0.90). These findings contrast a simplistic, yet common, view that memory traces are transferred from MTL to cortex. Next, we test the hypothesis that the MTL trace signature of memory consolidation should also reflect synaptic "desaturation," as evidenced by an increased signal-to-noise ratio. We find that the magnitude of relative BOLD enhancement among surviving memories is positively linked to the rate of removal (i.e., forgetting) of competing traces. Moreover, an image-feature and time interaction of MTL and visual cortex functional connectivity suggests that consolidation mechanisms improve the specificity of a distributed trace. These neurobiological effects do not replicate on a shorter timescale (within a session), implicating a prolonged, offline process. While recognition can potentially involve cognitive processes outside of memory retrieval (e.g., re-encoding), our work largely favors MTT and desaturation as perhaps complementary consolidative memory mechanisms.


Asunto(s)
Mapeo Encefálico , Imagen por Resonancia Magnética , Humanos , Pruebas Neuropsicológicas , Lóbulo Temporal/fisiología , Oxígeno
2.
Commun Biol ; 4(1): 301, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33686216

RESUMEN

Network architecture is a brain-organizational motif present across spatial scales from cell assemblies to distributed systems. Structural pathology in some neurodegenerative disorders selectively afflicts a subset of functional networks, motivating the network degeneration hypothesis (NDH). Recent evidence suggests that structural pathology recapitulating physiology may be a general property of neuropsychiatric disorders. To test this possibility, we compared functional and structural network meta-analyses drawing upon the BrainMap database. The functional meta-analysis included results from >7,000 experiments of subjects performing >100 task paradigms; the structural meta-analysis included >2,000 experiments of patients with >40 brain disorders. Structure-function network concordance was high: 68% of networks matched (pFWE < 0.01), confirming the broader scope of NDH. This correspondence persisted across higher model orders. A positive linear association between disease and behavioral entropy (p = 0.0006;R2 = 0.53) suggests nodal stress as a common mechanism. Corroborating this interpretation with independent data, we show that metabolic 'cost' significantly differs along this transdiagnostic/multimodal gradient.


Asunto(s)
Encéfalo/patología , Encéfalo/fisiopatología , Trastornos Mentales/patología , Trastornos Mentales/fisiopatología , Degeneración Nerviosa , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/fisiopatología , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Mapeo Encefálico , Estudios de Casos y Controles , Humanos , Trastornos Mentales/diagnóstico por imagen , Trastornos Mentales/metabolismo , Red Nerviosa/patología , Red Nerviosa/fisiopatología , Metaanálisis en Red , Enfermedades Neurodegenerativas/diagnóstico por imagen , Enfermedades Neurodegenerativas/metabolismo
3.
Soc Cogn Affect Neurosci ; 14(9): 933-945, 2019 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-31588508

RESUMEN

Resting-state functional connectivity (rsFC) is an emerging means of understanding the neurobiology of combat-related post-traumatic stress disorder (PTSD). However, most rsFC studies to date have limited focus to cognitively related intrinsic connectivity networks (ICNs), have not applied data-driven methodologies or have disregarded the effect of combat exposure. In this study, we predicted that group independent component analysis (GICA) would reveal group-wise differences in rsFC across 50 active duty service members with PTSD, 28 combat-exposed controls (CEC), and 25 civilian controls without trauma exposure (CC). Intranetwork connectivity differences were identified across 11 ICNs, yet combat-exposed groups were indistinguishable in PTSD vs CEC contrasts. Both PTSD and CEC demonstrated anatomically diffuse differences in the Auditory Vigilance and Sensorimotor networks compared to CC. However, intranetwork connectivity in a subset of three regions was associated with PTSD symptom severity among executive (left insula; ventral anterior cingulate) and right Fronto-Parietal (perigenual cingulate) networks. Furthermore, we found that increased temporal synchronization among visuospatial and sensorimotor networks was associated with worse avoidance symptoms in PTSD. Longitudinal neuroimaging studies in combat-exposed cohorts can further parse PTSD-related, combat stress-related or adaptive rsFC changes ensuing from combat.


Asunto(s)
Encéfalo/fisiopatología , Trastornos de Combate/fisiopatología , Trastornos por Estrés Postraumático/fisiopatología , Adulto , Encéfalo/diagnóstico por imagen , Femenino , Neuroimagen Funcional , Giro del Cíngulo/fisiopatología , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Neuroimagen
4.
J Psychiatr Res ; 114: 161-169, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31082658

RESUMEN

BACKGROUND: Previous studies indicate that youth with posttraumatic stress disorder (PTSD) have abnormal activation in brain regions important for emotion processing. It is unknown whether symptom improvement is accompanied by normative changes in these regions. This study identified neural changes associated with symptom improvement with the long-term goal of identifying malleable targets for interventions. METHODS: A total of 80 functional magnetic resonance imaging (fMRI) scans were collected, including 20 adolescents with PTSD (ages 9-17) and 20 age- and sex-matched healthy control subjects, each scanned before and after a 5-month period. Trauma-focused cognitive behavioral therapy was provided to the PTSD group to ensure improvement in symptoms. Whole brain voxel-wise activation and region of interest analyses of facial expression task data were conducted to identify abnormalities in the PTSD group versus HC at baseline (BL), and neural changes correlated with symptom improvement from BL to EOS of study (EOS). RESULTS: At BL, the PTSD group had abnormally elevated activation in the cingulate cortex, hippocampus, amygdala, and medial frontal cortex compared to HC. From BL to EOS, PTSD symptoms improved an average of 39%. Longitudinal improvement in symptoms of PTSD was associated with decreasing activation in posterior cingulate, mid-cingulate, and hippocampus, while improvement in dissociative symptoms was correlated with decreasing activation in the amygdala. CONCLUSIONS: Abnormalities in emotion-processing brain networks in youth with PTSD normalize when symptoms improve, demonstrating neural plasticity of these regions in young patients and the importance of early intervention.


Asunto(s)
Encéfalo/fisiopatología , Trastornos por Estrés Postraumático/fisiopatología , Adolescente , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/fisiopatología , Encéfalo/diagnóstico por imagen , Estudios de Casos y Controles , Niño , Terapia Cognitivo-Conductual , Femenino , Lóbulo Frontal/diagnóstico por imagen , Lóbulo Frontal/fisiopatología , Neuroimagen Funcional , Giro del Cíngulo/diagnóstico por imagen , Giro del Cíngulo/fisiopatología , Hipocampo/diagnóstico por imagen , Hipocampo/fisiopatología , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Inducción de Remisión , Trastornos por Estrés Postraumático/diagnóstico por imagen , Trastornos por Estrés Postraumático/terapia
5.
Hum Brain Mapp ; 39(8): 3308-3325, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29717540

RESUMEN

The BrainMap database is a community resource that curates peer-reviewed, coordinate-based human neuroimaging literature. By pairing the results of neuroimaging studies with their relevant meta-data, BrainMap facilitates coordinate-based meta-analysis (CBMA) of the neuroimaging literature en masse or at the level of experimental paradigm, clinical disease, or anatomic location. Initially dedicated to the functional, task-activation literature, BrainMap is now expanding to include voxel-based morphometry (VBM) studies in a separate sector, titled: BrainMap VBM. VBM is a whole-brain, voxel-wise method that measures significant structural differences between or within groups which are reported as standardized, peak x-y-z coordinates. Here we describe BrainMap VBM, including the meta-data structure, current data volume, and automated reverse inference functions (region-to-disease profile) of this new community resource. CBMA offers a robust methodology for retaining true-positive and excluding false-positive findings across studies in the VBM literature. As with BrainMap's functional database, BrainMap VBM may be synthesized en masse or at the level of clinical disease or anatomic location. As a use-case scenario for BrainMap VBM, we illustrate a trans-diagnostic data-mining procedure wherein we explore the underlying network structure of 2,002 experiments representing over 53,000 subjects through independent components analysis (ICA). To reduce data-redundancy effects inherent to any database, we demonstrate two data-filtering approaches that proved helpful to ICA. Finally, we apply hierarchical clustering analysis (HCA) to measure network- and disease-specificity. This procedure distinguished psychiatric from neurological diseases. We invite the neuroscientific community to further exploit BrainMap VBM with other modeling approaches.


Asunto(s)
Encéfalo/diagnóstico por imagen , Bases de Datos Factuales , Metaanálisis como Asunto , Neuroimagen , Mapeo Encefálico , Minería de Datos , Humanos , Trastornos Mentales/diagnóstico por imagen , Enfermedades del Sistema Nervioso/diagnóstico por imagen , Programas Informáticos
6.
Neuroimage Clin ; 18: 115-129, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29387529

RESUMEN

Purpose: The hippocampus plays a central role in cognitive and affective processes and is commonly implicated in neurodegenerative diseases. Our study aimed to identify and describe a hippocampal network model (HNM) using trans-diagnostic MRI data from the BrainMap® database. We used meta-analysis to test the network degeneration hypothesis (NDH) (Seeley et al., 2009) by identifying structural and functional covariance in this hippocampal network. Methods: To generate our network model, we used BrainMap's VBM database to perform a region-to-whole-brain (RtWB) meta-analysis of 269 VBM experiments from 165 published studies across a range of 38 psychiatric and neurological diseases reporting hippocampal gray matter density alterations. This step identified 11 significant gray matter foci, or nodes. We subsequently used meta-analytic connectivity modeling (MACM) to define edges of structural covariance between nodes from VBM data as well as functional covariance using the functional task-activation database, also from BrainMap. Finally, we applied a correlation analysis using Pearson's r to assess the similarities and differences between the structural and functional covariance models. Key findings: Our hippocampal RtWB meta-analysis reported consistent and significant structural covariance in 11 key regions. The subsequent structural and functional MACMs showed a strong correlation between HNM nodes with a significant structural-functional covariance correlation of r = .377 (p = .000049). Significance: This novel method of studying network covariance using VBM and functional meta-analytic techniques allows for the identification of generalizable patterns of functional and structural abnormalities pertaining to the hippocampus. In accordance with the NDH, this framework could have major implications in studying and predicting spatial disease patterns using network-based assays.


Asunto(s)
Sustancia Gris/diagnóstico por imagen , Hipocampo/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen , Mapeo Encefálico , Sustancia Gris/fisiopatología , Hipocampo/fisiopatología , Humanos , Imagen por Resonancia Magnética , Modelos Neurológicos , Red Nerviosa/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...