Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 263: 115222, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37418939

RESUMEN

Accumulation of nano ZnO (nZnO) in soils could be toxic to bacterial communities through disruption of Zn homeostasis. Under such conditions, bacterial communities strive to maintain cellular Zn levels by accentuation of appropriate cellular machinery. In this study, soil was exposed to a gradient (50-1000 mg Zn kg-1) of nZnO for evaluating their effects on genes involved in Zn homeostasis (ZHG). The responses were compared with similar levels of its bulk counterpart (bZnO). It was observed that ZnO (as nZnO or bZnO) induced a plethora of influx and efflux transporters as well as metallothioneins (MTs) and metallochaperones mediated by an array of Zn sensitive regulatory proteins. Major influx system identified was the ZnuABC transporter, while important efflux transporters identified were CzcCBA, ZntA, YiiP and the major regulator was Zur. The response of communities was dose- dependent at lower concentrations (<500 mg Zn kg-1 as nZnO or bZnO). However, at 1000 mg Zn kg-1, a size-dependent threshold of gene/gene family abundances was evident. Under nZnO, a poor adaptation to toxicity induced anaerobic conditions due to deployment of major influx and secondary detoxifying systems as well as poor chelation of free Zn ions was evident. Moreover, Zn homeostasis related link with biofilm formation and virulence were accentuated under nZnO than bZnO. While these findings were verified by PCoA and Procrustes analysis, Network analysis and taxa vs ZHG associations also substantiated that a stronger Zn shunting mechanism was induced under nZnO due to higher toxicity. Molecular crosstalks with systems governing Cu and Fe homeostasis were also evident. Expression analysis of important resistance genes by qRT-PCR showed good alignment with the predictive metagenome data, thereby validating our findings. From the study it was evident that the induction of detoxifying and resistant genes was greatly lowered under nZnO, which markedly hampered Zn homeostasis among the soil bacterial communities.


Asunto(s)
Nanopartículas , Óxido de Zinc , Óxido de Zinc/toxicidad , Suelo , Metales , Zinc/toxicidad , Zinc/metabolismo , Homeostasis
2.
Environ Sci Pollut Res Int ; 30(60): 125158-125164, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37354299

RESUMEN

Biodiesel production from non-edible oils utilizing a highly efficient eco-friendly catalyst is a crucial necessity for replacing fossil fuels. In the present work, biochar has been applied for both energy and environmental purposes. The biochar was made by slow pyrolysis from a variety of biomass, primarily cassava peel, irul wood sawdust, and coconut shell. All biochars were used as adsorbents to remove an anionic dye (methyl orange) by conducting batch adsorption studies. The biochar made from cassava peels showed the highest dye adsorption, and it was characterized using elements analysis (CHNS), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), surface area analyzer (BET), total acid density, and sulfonic acid group density to successfully confirm the presence of weak (-OH) and strong (-COOH, -SO3H) acidic groups. Furthermore, for microwave-assisted biodiesel production from Millettia pinnata seed oil, the dye adsorbed biochar made from cassava peel was utilized as a Brønsted acid catalyst. The catalyst having a surface area of 4.89 m2/g, an average pore width of 108.77 nm, a total acid density of 3.2 mmol/g, and a sulfonic acid group density of 1.9 mmol/g exhibits distinctive mesoporous properties that contribute to a biodiesel yield of 91.25%. By utilizing the catalyst for three more cycles and getting a yield of more than 75%, the reusability of the catalyst was investigated.


Asunto(s)
Biocombustibles , Microondas , Ácidos Sulfónicos
3.
Environ Sci Pollut Res Int ; 27(13): 15925-15930, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32207016

RESUMEN

The present work mainly focuses on the development of heterogeneous catalysts from fishbone, loaded with sodium hydroxide for transesterification of biodiesel. The catalyst was developed using a two-step process involving the calcination of fishbone at 900 °C, followed by a hydrothermal process with a sodium hydroxide-loaded (NaOH) solution. The synthesized heterogeneous catalyst was characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), atomic force microscopy (AFM), and BET surface area analysis. The transesterification of waste cooking palm oil (WCO) with BC-NaOH shows a maximum yield of up to 98% for 2.5 wt.% catalyst loading, 1:9 oil:methanol molar ratio at a temperature of 65 °C for a reaction time of 1.5 h. The enhanced catalytic activity is due to the high base active site density of hydroxyl groups from hydroxyapatite, ß- tricalcium phosphate, and sodium hydroxide. A gas chromatography-mass spectroscopy (GC-MS) was performed to determine the conversion of oil to biodiesel. The reusability of the catalyst was confirmed from the consistency in the biodiesel yield obtained in up to 7 cycles.


Asunto(s)
Biocombustibles/análisis , Aceites de Plantas , Animales , Catálisis , Culinaria , Esterificación , Aceite de Palma , Hidróxido de Sodio , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...