Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Int J Radiat Biol ; 98(12): 1763-1776, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36067511

RESUMEN

PURPOSE: The Adverse Outcome Pathway (AOP) framework, a systematic tool that can link available mechanistic data with phenotypic outcomes of relevance to regulatory decision-making, is being explored in areas related to radiation risk assessment. To examine the challenges including the use of AOPs to support the radiation protection community, an international horizon-style exercise was initiated through the Organisation for Economic Co-operation and Development Nuclear Energy Agency High-Level Group on Low Dose Research Radiation/Chemical AOP Joint Topical Group. The objective of the HSE was to facilitate the collection of ideas from a range of experts, to short-list a set of priority research questions that could, if answered, improve the description of the radiation dose-response relationship for low dose/dose-rate exposures, as well as reduce uncertainties in estimating the risk of developing adverse health outcomes following such exposures. MATERIALS AND METHODS: The HSE was guided by an international steering committee of radiation risk experts. In the first phase, research questions were solicited on areas that can be supported by the AOP framework, or challenges on the use of AOPs in radiation risk assessment. In the second phase, questions received were refined and sorted by the SC using a best-worst scaling method. During a virtual 3-day workshop, the list of questions was further narrowed. In the third phase, an international survey of the broader radiation protection community led to an orderly ranking of the top questions. RESULTS: Of the 271 questions solicited, 254 were accepted and categorized into 9 themes. These were further refined to the top 25 prioritized questions. Among these, the higher ranked questions will be considered as 'important' to drive future initiatives in the low dose radiation protection community. These included questions on the ability of AOPs to delineate responses across different levels of biological organization, and how AOPs could be applied to address research questions on radiation quality, doses or dose-rates, exposure time patterns and deliveries, and uncertainties in low dose/dose-rate effects. A better understanding of these concepts is required to support the use of the AOP framework in radiation risk assessment. CONCLUSION: Through dissemination of these results and considerations on next steps, the JTG will address select priority questions to advance the development and use of AOPs in the radiation protection community. The major themes observed will be discussed in the context of their relevance to areas of research that support the system of radiation protection.


Asunto(s)
Rutas de Resultados Adversos , Protección Radiológica , Medición de Riesgo/métodos , Proyectos de Investigación , Encuestas y Cuestionarios
2.
J Environ Radioact ; 244-245: 106826, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35134696

RESUMEN

Predictions of radionuclide dose rates to freshwater organisms can be used to evaluate the radiological environmental impacts of releases from uranium mining and milling projects. These predictions help inform decisions on the implementation of mitigation measures. The objective of this study was to identify how dose rate modelling could be improved to reduce uncertainty in predictions to non-human biota. For this purpose, we modelled the activity concentrations of 210Pb, 210Po, 226Ra, 230Th, and 238U downstream of uranium mines and mills in northern Saskatchewan, Canada, together with associated weighted absorbed dose rates for a freshwater food chain using measured activity concentrations in water and sediments. Differences in predictions of radionuclide activity concentrations occurred mainly from the different default partition coefficient and concentration ratio values from one model to another and including all or only some 238U decay daughters in the dose rate assessments. Consequently, we recommend a standardized best-practice approach to calculate weighted absorbed dose rates to freshwater biota whether a facility is at the planning, operating or decommissioned stage. At the initial planning stage, the best-practice approach recommend using conservative site-specific baseline activity concentrations in water, sediments and organisms and predict conservative incremental activity concentrations in these media by selecting concentration ratios based on species similarity and similar water quality conditions to reduce the uncertainty in dose rate calculations. At the operating and decommissioned stages, the best-practice approach recommends relying on measured activity concentrations in water, sediment, fish tissue and whole-body of small organisms to further reduce uncertainty in dose rate estimates. This approach would allow for more realistic but still conservative dose assessments when evaluating impacts from uranium mining projects and making decision on adequate controls of releases.


Asunto(s)
Monitoreo de Radiación , Uranio , Animales , Agua Dulce , Minería , Radioisótopos/análisis , Saskatchewan , Uranio/análisis
3.
J Environ Radioact ; 237: 106697, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34334231

RESUMEN

The ALLIANCE Strategic Research Agenda (SRA) for radioecology is a living document that defines a long-term vision (20 years) of the needs for, and implementation of, research in radioecology in Europe. The initial SRA, published in 2012, included consultation with a wide range of stakeholders (Hinton et al., 2013). This revised version is an update of the research strategy for identified research challenges, and includes a strategy to maintain and develop the associated required capacities for workforce (education and training) and research infrastructures and capabilities. Beyond radioecology, this SRA update constitutes a contribution to the implementation of a Joint Roadmap for radiation protection research in Europe (CONCERT, 2019a). This roadmap, established under the H2020 European Joint Programme CONCERT, provides a common and shared vision for radiation protection research, priority areas and strategic objectives for collaboration within a European radiation protection research programme to 2030 and beyond. Considering the advances made since the first SRA, this updated version presents research challenges and priorities including identified scientific issues that, when successfully resolved, have the potential to impact substantially and strengthen the system and/or practice of the overall radiation protection (game changers) in radioecology with regard to their integration into the global vision of European research in radiation protection. An additional aim of this paper is to encourage contribution from research communities, end users, decision makers and other stakeholders in the evaluation, further advancement and accomplishment of the identified priorities.


Asunto(s)
Monitoreo de Radiación , Protección Radiológica , Europa (Continente)
4.
Plant Physiol Biochem ; 140: 9-17, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31078053

RESUMEN

The mutants Atnoa1 and Atnia1nia2noa1-2 having a defective chloroplast developmental process, showed enhanced chlorophyll levels when they were grown on Murashige and Skoog (MS) medium and on exposure with uranium (U) on Hoagland medium. Thus we hypothesized that these mutants probably produced NO in MS medium and on exposure with U. Wild-type Col-0, Atnoa1, Atnia1nia2noa1-2 plants were cultured on modified Hoagland and 1/10 MS media and NO generation in the roots of these mutants was monitored using NO selective fluorescent dyes, DAF-2DA and Fl2E. Both Atnoa1 and Atnia1nia2noa1-2 triple mutants produced NO as observed by increases in DAF-2T and Fl2E fluorescence when these mutants were grown on MS medium but not on Hoagland medium. In presence of NO scavenger, methylene blue (MB, 200 µM), DAF-2T and Fl2E fluorescence was completely abolished. On the other hand treatment of the plants with 25 µM U triggered NO generation. U-treated Atnoa1 and Atnia1nia2noa1-2 plants upregulated genes (POR B, POR D, CHL D) involved in the chlorophyll biosynthesis. From these results it was concluded that Atnoa1 and Atnia1nia2noa1-2 are conditional NO producers and it appears that NO generation in plants substantially depends on growth medium and NIA1, NIA2 or NOA1 does not appear to be really involved in NO generation in MS medium or after U exposure.


Asunto(s)
Arabidopsis/metabolismo , Óxido Nítrico/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Mutación/genética , Uranio/farmacología
5.
J Environ Radioact ; 197: 16-22, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30500479

RESUMEN

Ectomycorrhizal (EM) fungi form symbioses with dominant tree families in boreal, temperate and tropical ecosystems and are important drivers of ecosystem function. EM fungal hyphae extend over a large area making them susceptible to enhanced radiation levels from naturally occurring or anthropogenically originating radioisotopes in the rhizosphere. In this study, the in-vitro effects of ionizing radiation on the growth and biomass of EM fungi Suillus luteus, S. bovinus and Rhizopogon luteolus were investigated. EM fungal cultures were exposed to gamma radiation from a 137Cs source for 137 h in darkness at 21 °C at dose rates of 404, 108.5 and 54.9 mGy h-1 resulting in total absorbed doses of 55.21, 14.82 and 7.50 Gy respectively. Cultures grown in the dark at 21 °C but not exposed to the 137Cs source served as the control. Our results show that EM fungi vary in their sensitivity to ionizing radiation. EM fungi used in this study produced melanin and reactive oxygen species scavenging enzymes such as catalase and superoxide dismutase as a response to ionizing radiation.


Asunto(s)
Melaninas/metabolismo , Micorrizas/efectos de la radiación , Radiación Ionizante , Basidiomycota , Radioisótopos de Cesio , Ecosistema , Hongos , Micorrizas/enzimología , Micorrizas/crecimiento & desarrollo , Especies Reactivas de Oxígeno/metabolismo
6.
Chemosphere ; 207: 239-254, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29803156

RESUMEN

The potential of photosynthetic organisms to remediate radioactively contaminated water was evaluated for scenarios related to nuclear installations and included the following radionuclides: 137Cs, 134Cs, 136Cs, 90Sr, 131I, 239Pu, 241Am, 132Te/132I, 58Co, 60Co, 51Cr, 110mAg, 54Mn, 124Sb, 59Fe, 65Zn, 95Zr, and 95Nb. An extensive literature review was undertaken leading to the creation of a database including more than 20,000 entries from over 100 references in which terrestrial and aquatic plants, macro- and microalgae, cyanobacteria and biosorbents derived from these organisms were used to clean water from these specific radionuclides or their stable isotopes. In a first phase, the remediation potential of the organisms and biosorbents was evaluated for the individual elements based on parameters such as plant uptake, removal percentage, and bioconcentration factor, and for two radionuclide mixtures based on the ability of the organisms/biosorbents to work under mixture conditions. As the experimental and environmental conditions will influence the performance of the organisms and biosorbents, a literature-based evaluation of the most influencing or restricting parameters was made and water pH, competing ions, and the chemical modification of biosorbents showed to be of major importance. Finally, the most promising organisms and biosorbents were identified using a specifically developed selection procedure taking into account their performance and robustness. Ranking was done based on clear criteria with a distinct weight and scoring scheme. As such, 20 organisms/biosorbents were identified that showed high potential to clean waters contaminated with (mixtures of) radionuclides related to nuclear installations and which can be used for further experimental investigations.


Asunto(s)
Chlorophyta/química , Cianobacterias/química , Plantas/química , Agua/química
7.
Plant Sci ; 257: 84-95, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28224921

RESUMEN

Ecotoxicological research provides knowledge on ionising radiation-induced responses in different plant species. However, the sparse data currently available are mainly extracted from acute exposure treatments. To provide a better understanding of environmental exposure scenarios, the response to stress in plants must be followed in more natural relevant chronic conditions. We previously showed morphological and biochemical responses in Lemna minor plants continuously exposed for 7days in a dose-rate dependent manner. In this study responses on molecular (gene expression) and physiological (photosynthetic) level are evaluated in L. minor plants exposed to ionising radiation. To enable this, we examined the gene expression profiles of irradiated L. minor plants by using an RNA-seq approach. The gene expression data reveal indications that L. minor plants exposed at lower dose rates, can tolerate the exposure by triggering acclimation responses. In contrast, at the highest dose rate tested, a high number of genes related to antioxidative defense systems, DNA repair and cell cycle were differentially expressed suggesting that only high dose rates of ionising radiation drive L. minor plants into survival strategies. Notably, the photosynthetic process seems to be unaffected in L. minor plants among the tested dose rates. This study, supported by our earlier work, clearly indicates that plants shift from acclimation responses towards survival responses at increasing dose rates of ionising radiation.


Asunto(s)
Aclimatación/genética , Aclimatación/efectos de la radiación , Araceae/genética , Araceae/efectos de la radiación , Radiación Ionizante , Análisis de Secuencia de ARN , Araceae/crecimiento & desarrollo , Araceae/fisiología , Bases de Datos Genéticas , Relación Dosis-Respuesta en la Radiación , Rayos gamma , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Ontología de Genes , Genes de Plantas , Luz , Metaanálisis como Asunto , Modelos Biológicos , Fotosíntesis/genética , Fotosíntesis/efectos de la radiación , Pigmentos Biológicos/metabolismo , Transducción de Señal/genética , Transducción de Señal/efectos de la radiación
8.
New Phytol ; 214(2): 820-829, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28102551

RESUMEN

Flooded (paddy) rice (Oryza sativa) can take up ions from the irrigation water by foliar uptake via the exposed stem base. We hypothesised that the stem base uptake of radiocaesium (RCs) is a pathway for rice grown in RCs-contaminated environments. We developed a bi-compartmental device which discriminates the stem base from root RCs uptake from solutions, thereby using RCs isotopes (137 Cs and 134 Cs) with < 2% solution leak between the compartments. Radiocaesium uptake was linear over time (0-24 h). Radiocaesium uptake to the entire plant, expressed per dry weight of the exposed parts, was sixfold higher for the roots than for the exposed stem base. At equal RCs concentrations in both compartments, the exposed stem base and root uptake contributed almost equally to the total shoot RCs concentrations. Reducing potassium supply to the roots not only increased the root RCs uptake but also increased RCs uptake by the stem base. This study was the first to experimentally demonstrate active and internally regulated RCs uptake by the stem base of rice. Scenario calculations for the Fukushima-affected area predict that RCs in irrigation water could be an important source of RCs in rice as indirectly suggested from field data.


Asunto(s)
Riego Agrícola , Radioisótopos de Cesio/metabolismo , Oryza/metabolismo , Hojas de la Planta/metabolismo , Contaminación Radiactiva del Agua/análisis , Cinética , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo , Tallos de la Planta/efectos de los fármacos , Tallos de la Planta/metabolismo , Potasio/farmacología , Soluciones
9.
J Environ Radioact ; 165: 270-279, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27814501

RESUMEN

When terrestrial environments get contaminated with long-lived gamma emitting radionuclides, plants that grow in these contaminated areas are exposed to gamma radiation during consecutive generations. Therefore it is important to evaluate the gamma induced stress response in plants in and between generations. The objective of this research is to reveal differences at the level of the antioxidative stress response between generations with a different radiation history. An experiment was conducted in which 7-days old Arabidopsis thaliana plants were exposed for 14 days to four different gamma dose rates: 22 mGy/h, 38 mGy/h, 86 mGy/h and 457 mGy/h. Two different plant groups were used: plants that were not exposed to gamma radiation before (P0) and plants that received the aforementioned gamma treatment during their previous generation (S1). Growth, the concentration of the antioxidants ascorbate and glutathione, a number of antioxidative enzyme activities and their gene transcript levels were analysed. A dose-rate dependent induction was seen for catalase (CAT) and guaiacol peroxidase (GPX) in the roots and for syringaldazine peroxidase (SPX) in the shoots. Differences between the two generations were observed for CAT and GPX in the roots, where a significantly higher activity of these reactive oxygen species (ROS) detoxifying enzymes was observed in the S1 generation. For SPX in the shoots, a dose dependent upregulation was observed in the P0 generation. However, high SPX activities were present for all doses in the S1 generation. These differences in enzyme activity between generations for SPX and GPX and the involvement of these enzymes in cell wall biosynthesis, suggest an important role for cell wall strengthening in the response to gamma irradiation.


Asunto(s)
Arabidopsis/fisiología , Arabidopsis/efectos de la radiación , Rayos gamma , Estrés Oxidativo/fisiología , Catalasa/metabolismo , Glutatión/metabolismo , Oxidación-Reducción , Peroxidasas/metabolismo , Raíces de Plantas/metabolismo
10.
Integr Environ Assess Manag ; 12(4): 662-6, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27640412

RESUMEN

The options adopted for recovery of agricultural land after the Chernobyl and Fukushima accidents are compared by examining their technical and socio-economic aspects. The analysis highlights commonalities such as the implementation of tillage and other types of countermeasures and differences in approach, such as preferences for topsoil removal in Fukushima and the application of K fertilizers in Chernobyl. This analysis shows that the recovery approach needs to be context-specific to best suit the physical, social, and political environment. The complex nature of the decision problem calls for a formal process for engaging stakeholders and the development of adequate decision support tools. Integr Environ Assess Manag 2016;12:662-666. © 2016 SETAC.


Asunto(s)
Agricultura/métodos , Accidente Nuclear de Chernóbil , Accidente Nuclear de Fukushima , Restauración y Remediación Ambiental , Fertilizantes , Exposición a la Radiación/prevención & control , Exposición a la Radiación/estadística & datos numéricos , Monitoreo de Radiación , Factores Socioeconómicos , Contaminantes Radiactivos del Suelo
11.
J Environ Radioact ; 153: 51-60, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26717351

RESUMEN

Food chain contamination with radiocaesium (RCs) in the aftermath of the Fukushima accident calls for an analysis of the specific factors that control the RCs transfer. Here, soil-to-plant transfer factors (TF) of RCs for grass were predicted from the potassium concentration in soil solution (mK) and the Radiocaesium Interception Potential (RIP) of the soil using existing mechanistic models. The mK and RIP were (a) either measured for 37 topsoils collected from the Fukushima accident affected area or (b) predicted from the soil clay content and the soil exchangeable potassium content using the models that had been calibrated for European soils. An average ammonium concentration was used throughout in the prediction. The measured RIP ranged 14-fold and measured mK varied 37-fold among the soils. The measured RIP was lower than the RIP predicted from the soil clay content likely due to the lower content of weathered micas in the clay fraction of Japanese soils. Also the measured mK was lower than that predicted. As a result, the predicted TFs relying on the measured RIP and mK were, on average, about 22-fold larger than the TFs predicted using the European calibrated models. The geometric mean of the measured TFs for grass in the affected area (N = 82) was in the middle of both. The TFs were poorly related to soil classification classes, likely because soil fertility (mK) was obscuring the effects of the soil classification related to the soil mineralogy (RIP). This study suggests that, on average, Japanese soils are more vulnerable than European soils at equal soil clay and exchangeable K content. The affected regions will be targeted for refined model validation.


Asunto(s)
Radioisótopos de Cesio/análisis , Radioisótopos de Cesio/metabolismo , Plantas/metabolismo , Potasio/análisis , Monitoreo de Radiación , Suelo/química , Monitoreo del Ambiente , Europa (Continente) , Japón , Modelos Teóricos , Contaminantes Radiactivos del Suelo/análisis , Contaminantes Radiactivos del Suelo/metabolismo
12.
J Environ Radioact ; 151 Pt 2: 427-37, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26187266

RESUMEN

Uranium (U) toxicity is known to be highly dependent on U speciation and bioavailability. To assess the impact of uranium on plants, a growth inhibition test was set up in the freshwater macrophyte Lemna minor. First growth media with different compositions were tested in order to find a medium fit for testing U toxicity in L. minor. Following arguments were used for medium selection: the ability to sustain L. minor growth, a high solubility of U in the medium and a high percentage of the more toxic U-species namely UO2(2+). Based on these selection criteria a with a low phosphate concentration of 0.5 mg L(-1) and supplemented with 5 mM MES (2-(N-morpholino)ethanesulfonic acid) to ensure pH stability was chosen. This medium also showed highest U toxicity compared to the other tested media. Subsequently a full dose response curve for U was established by exposing L. minor plants to U concentrations ranging from 0.05 µM up to 150 µM for 7 days. Uranium was shown to adversely affect growth of L. minor in a dose dependent manner with EC10, EC30 and EC50 values ranging between 1.6 and 4.8 µM, 7.7-16.4 µM and 19.4-37.2 µM U, respectively, depending on the growth endpoint. Four different growth related endpoints were tested: frond area, frond number, fresh weight and dry weight. Although differences in relative growth rates and associated ECx-values calculated on different endpoints are small (maximal twofold difference), frond area is recommended to be used to measure U-induced growth effects as it is a sensitive growth endpoint and easy to measure in vivo allowing for measurements over time.


Asunto(s)
Araceae/efectos de la radiación , Uranio/toxicidad , Contaminantes Radiactivos del Agua/toxicidad , Araceae/crecimiento & desarrollo , Carbonatos/química , Relación Dosis-Respuesta en la Radiación , Concentración de Iones de Hidrógeno , Fosfatos/química
13.
Mycorrhiza ; 26(3): 257-62, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26467250

RESUMEN

Long-lived radionuclides such as (90)Sr and (137)Cs can be naturally or accidentally deposited in the upper soil layers where they emit ß/γ radiation. Previous studies have shown that arbuscular mycorrhizal fungi (AMF) can accumulate and transfer radionuclides from soil to plant, but there have been no studies on the direct impact of ionizing radiation on AMF. In this study, root organ cultures of the AMF Rhizophagus irregularis MUCL 41833 were exposed to 15.37, 30.35, and 113.03 Gy gamma radiation from a (137)Cs source. Exposed spores were subsequently inoculated to Plantago lanceolata seedlings in pots, and root colonization and P uptake evaluated. P. lanceolata seedlings inoculated with non-irradiated AMF spores or with spores irradiated with up to 30.35 Gy gamma radiation had similar levels of root colonization. Spores irradiated with 113.03 Gy gamma radiation failed to colonize P. lanceolata roots. P content of plants inoculated with non-irradiated spores or of plants inoculated with spores irradiated with up to 30.35 Gy gamma radiation was higher than in non-mycorrhizal plants or plants inoculated with spores irradiated with 113.03 Gy gamma radiation. These results demonstrate that spores of R. irregularis MUCL 41833 are tolerant to chronic ionizing radiation at high doses.


Asunto(s)
Rayos gamma , Glomeromycota/efectos de la radiación , Fósforo/metabolismo , Plantago/metabolismo , Partículas beta , Glomeromycota/crecimiento & desarrollo , Glomeromycota/metabolismo , Micorrizas/efectos de la radiación , Fósforo/análisis , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Plantago/microbiología , Radiación Ionizante , Plantones/microbiología , Suelo , Esporas Fúngicas/metabolismo , Esporas Fúngicas/efectos de la radiación , Simbiosis
14.
Biotechnol Biofuels ; 8: 188, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26609323

RESUMEN

BACKGROUND: Freshwater duckweed, comprising the smallest, fastest growing and simplest macrophytes has various applications in agriculture, phytoremediation and energy production. Lemna minor, the so-called common duckweed, is a model system of these aquatic plants for ecotoxicological bioassays, genetic transformation tools and industrial applications. Given the ecotoxic relevance and high potential for biomass production, whole-genome information of this cosmopolitan duckweed is needed. RESULTS: The 472 Mbp assembly of the L. minor genome (2n = 40; estimated 481 Mbp; 98.1 %) contains 22,382 protein-coding genes and 61.5 % repetitive sequences. The repeat content explains 94.5 % of the genome size difference in comparison with the greater duckweed, Spirodela polyrhiza (2n = 40; 158 Mbp; 19,623 protein-coding genes; and 15.79 % repetitive sequences). Comparison of proteins from other monocot plants, protein ortholog identification, OrthoMCL, suggests 1356 duckweed-specific groups (3367 proteins, 15.0 % total L. minor proteins) and 795 Lemna-specific groups (2897 proteins, 12.9 % total L. minor proteins). Interestingly, proteins involved in biosynthetic processes in response to various stimuli and hydrolase activities are enriched in the Lemna proteome in comparison with the Spirodela proteome. CONCLUSIONS: The genome sequence and annotation of L. minor protein-coding genes provide new insights in biological understanding and biomass production applications of Lemna species.

15.
J Environ Radioact ; 150: 195-202, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26348936

RESUMEN

The biological effects and interactions of different radiation types in plants are still far from understood. Among different radiation types, external gamma radiation treatments have been mostly studied to assess the biological impact of radiation toxicity in organisms. Upon exposure of plants to gamma radiation, ionisation events can cause, either directly or indirectly, severe biological damage to DNA and other biomolecules. However, the biological responses and oxidative stress related mechanisms under chronic radiation conditions are poorly understood in plant systems. In the following study, it was questioned if the Lemna minor growth inhibition test is a suitable approach to also assess the radiotoxicity of this freshwater plant. Therefore, L. minor plants were continuously exposed for seven days to 12 different dose rate levels covering almost six orders of magnitude starting from 80 µGy h(-1) up to 1.5 Gy h(-1). Subsequently, growth, antioxidative defence system and genomic responses of L. minor plants were evaluated. Although L. minor plants could survive the exposure treatment at environmental relevant exposure conditions, higher dose rate levels induced dose dependent growth inhibitions starting from approximately 27 mGy h(-1). A ten-percentage growth inhibition of frond area Effective Dose Rate (EDR10) was estimated at 95 ± 7 mGy h(-1), followed by 153 ± 13 mGy h(-1) and 169 ± 12 mGy h(-1) on fresh weight and frond number, respectively. Up to a dose rate of approximately 5 mGy h(-1), antioxidative enzymes and metabolites remained unaffected in plants. A significant change in catalase enzyme activity was found at 27 mGy h(-1) which was accompanied with significant increases of other antioxidative enzyme activities and shifts in ascorbate and glutathione content at higher dose rate levels, indicating an increase in oxidative stress in plants. Recent plant research hypothesized that environmental genotoxic stress conditions can induce endoreduplication events. Here an increase in ploidy level was observed at the highest tested dose rate. In conclusion, the results revealed that in plants several mechanisms and pathways interplay to cope with radiation induced stress.


Asunto(s)
Araceae/efectos de la radiación , Rayos gamma/efectos adversos , Estrés Oxidativo/efectos de la radiación , Poliploidía , Araceae/genética , Araceae/metabolismo , Daño del ADN , Relación Dosis-Respuesta en la Radiación
16.
J Environ Radioact ; 150: 36-43, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26263174

RESUMEN

Anthropogenic activities have led to a widespread uranium (U) contamination in many countries. The toxic effects of U at the cellular level have mainly been investigated at a pH around 5.5, the optimal pH for hydroponically grown plants. However, since the speciation of U, and hence its toxicity, is strongly dependent on environmental factors such as the pH, it is important to investigate the effects of U at different environmentally relevant pH levels. Although U is poorly translocated from the roots to the shoots, resulting in a low U concentration in the leaves, it has been demonstrated that toxic effects in the leaves were already visible after 1 day exposure at pH 5.5, although only when exposed to relatively high U concentrations (100 µM). Therefore, the present study aimed to analyse the effects of different U concentrations (ranging from 0 to 100 µM) at pH 4.5 in leaves of Arabidopsis thaliana plants. Results indicate that U induces early senescence in A. thaliana leaves as was suggested by a decreased expression of CAT2 accompanied by an induction of CAT3 expression, a decreased CAT capacity and an increased lipid peroxidation. In addition, miRNA398b/c is involved in the regulation of the SOD response in the leaves. As such, an increased MIR398b/c expression was observed leading to a decreased transcript level of CSD1/2. Finally, the biosynthesis of ascorbate was induced after U exposure. This can point towards an important role for this metabolite in the scavenging of reactive oxygen species under U stress.


Asunto(s)
Arabidopsis/efectos de la radiación , Estrés Oxidativo/efectos de la radiación , Uranio/toxicidad , Antioxidantes/metabolismo , Arabidopsis/metabolismo , Relación Dosis-Respuesta en la Radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Concentración de Iones de Hidrógeno , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación
17.
J Environ Radioact ; 149: 99-109, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26225834

RESUMEN

Speciation modelling of uranium (as uranyl) and thorium, in four freshwaters impacted by mining activities, was used to evaluate (i) the influence of the co-contaminants present on the predicted speciation, and (ii) the influence of using nine different model/database combinations on the predictions. Generally, co-contaminants were found to have no significant effects on speciation, with the exception of Fe(III) in one system, where formation of hydrous ferric oxide and adsorption of uranyl to its surface impacted the predicted speciation. Model and database choice on the other hand clearly influenced speciation prediction. Complexes with dissolved organic matter, which could be simulated by three of the nine model/database combinations, were predicted to be important in a slightly acidic, soft water. Model prediction of uranyl and thorium speciation needs to take account of database comprehensiveness and cohesiveness, including the capability of the model and database to simulate interactions with dissolved organic matter. Measurement of speciation in natural waters is needed to provide data that may be used to assess and improve model capabilities and to better constrain the type of predictive modelling work presented here.


Asunto(s)
Agua Dulce/análisis , Monitoreo de Radiación , Torio/química , Uranio/química , Contaminantes Radiactivos del Agua/química , Francia , Minería , Modelos Químicos , Saskatchewan , Tayikistán
18.
Int J Mol Sci ; 16(7): 15309-27, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26198226

RESUMEN

In the following study, dose dependent effects on growth and oxidative stress induced by ß-radiation were examined to gain better insights in the mode of action of ß-radiation induced stress in plant species. Radiostrontium (9°Sr) was used to test for ß-radiation induced responses in the freshwater macrophyte Lemna minor. The accumulation pattern of 90Sr was examined for L. minor root and fronds separately over a seven-day time period and was subsequently used in a dynamic dosimetric model to calculate ß-radiation dose rates. Exposing L. minor plants for seven days to a 9°Sr activity concentration of 25 up to 25,000 kBq·L⁻¹ resulted in a dose rate between 0.084 ± 0.004 and 97 ± 8 mGy·h⁻¹. After seven days of exposure, root fresh weight showed a dose dependent decrease starting from a dose rate of 9.4 ± 0.5 mGy·h⁻¹. Based on these data, an EDR10 value of 1.5 ± 0.4 mGy·h⁻¹ was estimated for root fresh weight and 52 ± 17 mGy·h⁻¹ for frond fresh weight. Different antioxidative enzymes and metabolites were further examined to analyze if ß-radiation induces oxidative stress in L. minor.


Asunto(s)
Antioxidantes/metabolismo , Araceae/metabolismo , Araceae/efectos de la radiación , Estrés Fisiológico/efectos de la radiación , Radioisótopos de Estroncio/farmacología , Araceae/efectos de los fármacos , Araceae/enzimología , Partículas beta , Metaboloma/efectos de la radiación , Radiometría , Estrés Fisiológico/efectos de los fármacos , Factores de Tiempo
19.
J Environ Radioact ; 149: 51-63, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26204519

RESUMEN

Human activity has led to an increasing amount of radionuclides in the environment and subsequently to an increased risk of exposure of the biosphere to ionising radiation. Due to their high linear energy transfer, α-emitters form a threat to biota when absorbed or integrated in living tissue. Among these, (241)Am is of major concern due to high affinity for organic matter and high specific activity. This study examines the dose-dependent biological effects of α-radiation delivered by (241)Am at the morphological, physiological and molecular level in 14-day old seedlings of Arabidopsis thaliana after hydroponic exposure for 4 or 7 days. Our results show that (241)Am has high transfer to the roots but low translocation to the shoots. In the roots, we observed a transcriptional response of reactive oxygen species scavenging and DNA repair pathways. At the physiological and morphological level this resulted in a response which evolved from redox balance control and stable biomass at low dose rates to growth reduction, reduced transfer and redox balance decline at higher dose rates. This situation was also reflected in the shoots where, despite the absence of a transcriptional response, the control of photosynthesis performance and redox balance declined with increasing dose rate. The data further suggest that the effects in both organs were initiated in the roots, where the highest dose rates occurred, ultimately affecting photosynthesis performance and carbon assimilation. Though further detailed study of nutrient balance and (241)Am localisation is necessary, it is clear that radionuclide uptake and distribution is a major parameter in the global exposure effects on plant performance and health.


Asunto(s)
Partículas alfa/efectos adversos , Americio/toxicidad , Antioxidantes/efectos de la radiación , Arabidopsis/efectos de la radiación , Daño del ADN , Transcripción Genética/efectos de la radiación , Antioxidantes/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Reparación del ADN/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Estrés Oxidativo/efectos de la radiación , Fotosíntesis/efectos de la radiación , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de la radiación , Brotes de la Planta/metabolismo , Brotes de la Planta/efectos de la radiación
20.
Int J Mol Sci ; 16(6): 12405-23, 2015 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-26042463

RESUMEN

To evaluate the environmental impact of uranium (U) contamination, it is important to investigate the effects of U at ecologically relevant conditions. Since U speciation, and hence its toxicity, strongly depends on environmental pH, the present study aimed to investigate dose-dependent effects of U at pH 7.5. Arabidopsis thaliana plants (Mouse-ear Cress) were exposed for three days to different U concentrations at pH 7.5. In the roots, the increased capacities of ascorbate peroxidase and glutathione reductase indicate an important role for the ascorbate-glutathione cycle during U-induced stress. However, a significant decrease in the ascorbate redox state was observed after exposure to 75 and 100 µM U, indicating that those roots are severely stressed. In accordance with the roots, the ascorbate-glutathione cycle plays an important role in the antioxidative defence systems in A. thaliana leaves exposed to U at pH 7.5 as the ascorbate and glutathione biosynthesis were upregulated. In addition, small inductions of enzymes of the antioxidative defence system were observed at lower U concentrations to counteract the U-induced stress. However, at higher U concentrations it seems that the antioxidative defence system of the leaves collapses as reductions in enzyme activities and gene expression levels were observed.


Asunto(s)
Antioxidantes/metabolismo , Arabidopsis/efectos de los fármacos , Ácido Ascórbico/metabolismo , Glutatión/metabolismo , Uranio/farmacología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Concentración de Iones de Hidrógeno , Estrés Oxidativo , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...