Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 782: 146406, 2021 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-33839658

RESUMEN

Chemodenitrification-the abiotic (chemical) reduction of nitrite (NO2-) by iron (II)-plays an important role in nitrogen cycling due in part to this process serving as a source of nitrous oxide (N2O). Questions remain about the fate of NO2- in the presence of mineral surfaces formed during chemodenitrification, such as iron(III) (hydr) oxides, particularly relative to dissolved iron(II). In this study, stirred-batch kinetic experiments were conducted under anoxic conditions (to mimic iron(III)-reducing conditions) from pH 5.5-8 to investigate NO2- reactivity with goethite (FeOOH(s)) and Fe(II)-treated goethite using wet chemical and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. Nitrite removal from solution by goethite was more rapid at pH 5.5 than at pH 7 and 8. Spectral changes upon nitrite adsorption imply an inner-sphere surface interaction (monodentate and bidentate) at pH 5.5 based on ATR-FTIR spectra of the nitrite-goethite interface over time. In iron(II)-amended experiments at pH 5.5 with high aqueous Fe(II) in equilibrium with goethite, nitrous oxide was generated, indicating that nitrite removal involved a combination of sorption and reduction processes. The presence of a surface complex resembling protonated nitrite (HONO) with an IR peak near ~1258 cm-1 was observed in goethite-only and iron(II)-goethite experiments, with a greater abundance of this species observed in the latter treatment. These results might help explain gaseous losses of nitrogen where nitrite and iron(II)/goethite coexist, with implications for nutrient cycling and release of atmospheric air pollutants.

2.
Environ Sci Technol ; 47(12): 6206-13, 2013 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-23662623

RESUMEN

Under Fe(3+)-reducing conditions, soil Fe(2+) oxidation has been shown to be coupled with nitrate (NO3(-)) reduction. One possible secondary reaction is the involvement of NO3(-) and nitrite (NO2(-)) with magnetite, a mixed valence Fe(2+)/Fe(3+) mineral found in many natural environments. Currently, little information exists on NO3(-) and NO2(-) reactivity with magnetite. This study investigates NO3(-) and NO2(-) reactivity with magnetite under anoxic conditions using batch kinetic experiments across a range of pH values (5.5-7.5) and in the presence of added dissolved Fe(2+). Solid phase products were characterized using X-ray diffraction (XRD), Mössbauer spectroscopy, and scanning electron microscopy (SEM). Nitrate removal by magnetite was much slower when compared with NO2(-). There was a pH-dependence in the reduction of NO2(-) by magnetite; the initial rate of NO2(-) removal was two times faster at pH 5.5 than at pH 7.5. The influence of pH was explained by the binding of NO2(-) to positively charged sites on magnetite (≡ S-OH2(+)) and to neutral sites (≡ S-OH(0)). As NO2(-) was removed from solution, nitric oxide (NO) and nitrous oxide (N2O) were identified as products confirming that nitrite was reduced. Structural Fe(2+) in magnetite was determined to be the reductant of NO2(-) based on the lack of measurable dissolved Fe(2+) release to solution coupled with Mössbauer spectra and XRD analysis of solid phase products. Addition of dissolved Fe(2+) to magnetite slurries resulted in adsorption and an acceleration in the rate of nitrite reduction at a given pH value. In summary, findings reported in this study demonstrate that if magnetite is present in Fe(3+)-reducing soil and NO2(-) is available, it can remove NO2(-) from solution and reduce a portion of it abiotically to NO and subsequently to N2O by a heterogeneous electron transfer process.


Asunto(s)
Óxido Ferrosoférrico/química , Nitritos/química , Microscopía Electrónica de Rastreo , Óxido Nítrico/química , Óxido Nitroso/química , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...