Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
ACS Nano ; 18(9): 7098-7113, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38343099

RESUMEN

Nanoparticles have been employed to elucidate the innate immune cell biology and trace cells accumulating at inflammation sites. Inflammation prompts innate immune cells, the initial responders, to undergo rapid turnover and replenishment within the hematopoietic bone marrow. Yet, we currently lack a precise understanding of how inflammation affects cellular nanoparticle uptake at the level of progenitors of innate immune cells in the hematopoietic marrow. To bridge this gap, we aimed to develop imaging tools to explore the uptake dynamics of fluorescently labeled cross-linked iron oxide nanoparticles in the bone marrow niche under varying degrees of inflammation. The inflammatory models included mice that received intramuscular lipopolysaccharide injections to induce moderate inflammation and streptozotocin-induced diabetic mice with additional intramuscular lipopolysaccharide injections to intensify inflammation. In vivo magnetic resonance imaging (MRI) and fluorescence imaging revealed an elevated level of nanoparticle uptake at the bone marrow as the levels of inflammation increased. The heightened uptake of nanoparticles within the inflamed marrow was attributed to enhanced permeability and retention with increased nanoparticle intake by hematopoietic progenitor cells. Moreover, intravital microscopy showed increased colocalization of nanoparticles within slowly patrolling monocytes in these inflamed hematopoietic marrow niches. Our discoveries unveil a previously unknown role of the inflamed hematopoietic marrow in enhanced storage and rapid deployment of nanoparticles, which can specifically target innate immune cells at their production site during inflammation. These insights underscore the critical function of the hematopoietic bone marrow in distributing iron nanoparticles to innate immune cells during inflammation. Our findings offer diagnostic and prognostic value, identifying the hematopoietic bone marrow as an imaging biomarker for early detection in inflammation imaging, advancing personalized clinical care.


Asunto(s)
Diabetes Mellitus Experimental , Nanopartículas , Animales , Ratones , Médula Ósea/diagnóstico por imagen , Lipopolisacáridos , Diabetes Mellitus Experimental/patología , Inflamación/diagnóstico por imagen , Inflamación/patología
2.
Nat Cardiovasc Res ; 1(1): 28-44, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35747128

RESUMEN

Abnormal hematopoiesis advances cardiovascular disease by generating excess inflammatory leukocytes that attack the arteries and the heart. The bone marrow niche regulates hematopoietic stem cell proliferation and hence the systemic leukocyte pool, but whether cardiovascular disease affects the hematopoietic organ's microvasculature is unknown. Here we show that hypertension, atherosclerosis and myocardial infarction (MI) instigate endothelial dysfunction, leakage, vascular fibrosis and angiogenesis in the bone marrow, altogether leading to overproduction of inflammatory myeloid cells and systemic leukocytosis. Limiting angiogenesis with endothelial deletion of Vegfr2 (encoding vascular endothelial growth factor (VEGF) receptor 2) curbed emergency hematopoiesis after MI. We noted that bone marrow endothelial cells assumed inflammatory transcriptional phenotypes in all examined stages of cardiovascular disease. Endothelial deletion of Il6 or Vcan (encoding versican), genes shown to be highly expressed in mice with atherosclerosis or MI, reduced hematopoiesis and systemic myeloid cell numbers in these conditions. Our findings establish that cardiovascular disease remodels the vascular bone marrow niche, stimulating hematopoiesis and production of inflammatory leukocytes.

3.
Cell ; 184(5): 1348-1361.e22, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33636128

RESUMEN

Clonal hematopoiesis, a condition in which individual hematopoietic stem cell clones generate a disproportionate fraction of blood leukocytes, correlates with higher risk for cardiovascular disease. The mechanisms behind this association are incompletely understood. Here, we show that hematopoietic stem cell division rates are increased in mice and humans with atherosclerosis. Mathematical analysis demonstrates that increased stem cell proliferation expedites somatic evolution and expansion of clones with driver mutations. The experimentally determined division rate elevation in atherosclerosis patients is sufficient to produce a 3.5-fold increased risk of clonal hematopoiesis by age 70. We confirm the accuracy of our theoretical framework in mouse models of atherosclerosis and sleep fragmentation by showing that expansion of competitively transplanted Tet2-/- cells is accelerated under conditions of chronically elevated hematopoietic activity. Hence, increased hematopoietic stem cell proliferation is an important factor contributing to the association between cardiovascular disease and clonal hematopoiesis.


Asunto(s)
Aterosclerosis/patología , Hematopoyesis Clonal , Células Madre Hematopoyéticas/patología , Envejecimiento/patología , Animales , Apolipoproteínas E/genética , Aterosclerosis/genética , Médula Ósea/metabolismo , Proliferación Celular , Evolución Clonal , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Modelos Biológicos , Privación de Sueño/patología
4.
Front Med (Lausanne) ; 8: 754369, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35071257

RESUMEN

Cardiovascular disease entails systemic changes in the vasculature. The endothelial cells lining the blood vessels are crucial in the pathogenesis of cardiovascular disease. Healthy endothelial cells direct the blood flow to tissues as vasodilators and act as the systemic interface between the blood and tissues, supplying nutrients for vital organs, and regulating the smooth traffic of leukocytes into tissues. In cardiovascular diseases, when inflammation is sensed, endothelial cells adjust to the local or systemic inflammatory state. As the inflamed vasculature adjusts, changes in the endothelial cells lead to endothelial dysfunction, altered blood flow and permeability, expression of adhesion molecules, vessel wall inflammation, thrombosis, angiogenic processes, and extracellular matrix production at the endothelial cell level. Preclinical multi-scale imaging of these endothelial changes using optical, acoustic, nuclear, MRI, and multimodal techniques has progressed, due to technical advances and enhanced biological understanding on the interaction between immune and endothelial cells. While this review highlights biological processes that are related to changes in the cardiac vasculature during cardiovascular diseases, it also summarizes state-of-the-art vascular imaging techniques. The advantages and disadvantages of the different imaging techniques are highlighted, as well as their principles, methodologies, and preclinical and clinical applications with potential future directions. These multi-scale approaches of vascular imaging carry great potential to further expand our understanding of basic vascular biology, to enable early diagnosis of vascular changes and to provide sensitive diagnostic imaging techniques in the management of cardiovascular disease.

5.
Sci Rep ; 10(1): 3562, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32081903

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
Sci Rep ; 9(1): 19366, 2019 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-31852978

RESUMEN

Regenerative therapies based on injectable biomaterials, hold an unparalleled potential for treating myocardial ischemia. Yet, noninvasive evaluation of their efficacy has been lagging behind. Here, we report the development and longitudinal application of multiparametric cardiac magnetic resonance imaging (MRI) to evaluate a hydrogel-based cardiac regenerative therapy. A pH-switchable hydrogel was loaded with slow releasing insulin growth factor 1 and vascular endothelial growth factor, followed by intramyocardial injection in a mouse model of ischemia reperfusion injury. Longitudinal cardiac MRI assessed three hallmarks of cardiac regeneration: angiogenesis, resolution of fibrosis and (re)muscularization after infarction. The multiparametric approach contained dynamic contrast enhanced MRI that measured improved vessel features by assessing fractional blood volume and permeability*surface area product, T1-mapping that displayed reduced fibrosis, and tagging MRI that showed improved regional myocardial strain in hydrogel treated infarcts. Finally, standard volumetric MRI demonstrated improved left ventricular functioning in hydrogel treated mice followed over time. Histology confirmed MR-based vessel features and fibrotic measurements. Our novel triple-marker strategy enabled detection of ameliorated regeneration in hydrogel treated hearts highlighting the translational potential of these longitudinal MRI approaches.


Asunto(s)
Corazón/diagnóstico por imagen , Hidrogeles/farmacología , Isquemia Miocárdica/diagnóstico por imagen , Neovascularización Fisiológica/efectos de los fármacos , Animales , Materiales Biocompatibles/farmacología , Modelos Animales de Enfermedad , Corazón/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Factor I del Crecimiento Similar a la Insulina/farmacología , Ratones , Isquemia Miocárdica/tratamiento farmacológico , Isquemia Miocárdica/patología , Miocardio/metabolismo , Miocardio/patología , Neovascularización Fisiológica/genética , Medicina Regenerativa , Factor A de Crecimiento Endotelial Vascular/farmacología
7.
Immunity ; 51(5): 899-914.e7, 2019 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-31732166

RESUMEN

Myocardial infarction, stroke, and sepsis trigger systemic inflammation and organism-wide complications that are difficult to manage. Here, we examined the contribution of macrophages residing in vital organs to the systemic response after these injuries. We generated a comprehensive catalog of changes in macrophage number, origin, and gene expression in the heart, brain, liver, kidney, and lung of mice with myocardial infarction, stroke, or sepsis. Predominantly fueled by heightened local proliferation, tissue macrophage numbers increased systemically. Macrophages in the same organ responded similarly to different injuries by altering expression of tissue-specific gene sets. Preceding myocardial infarction improved survival of subsequent pneumonia due to enhanced bacterial clearance, which was caused by IFNÉ£ priming of alveolar macrophages. Conversely, EGF receptor signaling in macrophages exacerbated inflammatory lung injury. Our data suggest that local injury activates macrophages in remote organs and that targeting macrophages could improve resilience against systemic complications following myocardial infarction, stroke, and sepsis.


Asunto(s)
Susceptibilidad a Enfermedades , Macrófagos/inmunología , Macrófagos/metabolismo , Animales , Biomarcadores , Recuento de Células , Susceptibilidad a Enfermedades/inmunología , Receptores ErbB/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Isquemia/etiología , Isquemia/metabolismo , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/metabolismo , Ratones , Células Musculares/inmunología , Células Musculares/metabolismo , Infarto del Miocardio/etiología , Infarto del Miocardio/metabolismo , Especificidad de Órganos/genética , Especificidad de Órganos/inmunología , Neumonía/etiología , Neumonía/metabolismo , Neumonía/patología
9.
Nat Neurosci ; 21(9): 1209-1217, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30150661

RESUMEN

Innate immune cells recruited to inflammatory sites have short life spans and originate from the marrow, which is distributed throughout the long and flat bones. While bone marrow production and release of leukocyte increases after stroke, it is currently unknown whether its activity rises homogeneously throughout the entire hematopoietic system. To address this question, we employed spectrally resolved in vivo cell labeling in the murine skull and tibia. We show that in murine models of stroke and aseptic meningitis, skull bone marrow-derived neutrophils are more likely to migrate to the adjacent brain tissue than cells that reside in the tibia. Confocal microscopy of the skull-dura interface revealed myeloid cell migration through microscopic vascular channels crossing the inner skull cortex. These observations point to a direct local interaction between the brain and the skull bone marrow through the meninges.


Asunto(s)
Médula Ósea/fisiología , Movimiento Celular/fisiología , Células Mieloides/fisiología , Cráneo/fisiología , Adulto , Animales , Médula Ósea/ultraestructura , Femenino , Humanos , Inflamación/patología , Masculino , Meningitis Aséptica/patología , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Células Mieloides/ultraestructura , Neutrófilos , Cráneo/citología , Cráneo/ultraestructura , Accidente Cerebrovascular/patología , Tibia/fisiología , Tibia/ultraestructura , Tomografía Computarizada por Rayos X
10.
Circ Res ; 123(4): 415-427, 2018 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-29980569

RESUMEN

RATIONALE: Inflammatory stress induced by exposure to bacterial lipopolysaccharide causes hematopoietic stem cell expansion in the bone marrow niche, generating a cellular immune response. As an integral component of the hematopoietic stem cell niche, the bone marrow vasculature regulates the production and release of blood leukocytes, which protect the host against infection but also fuel inflammatory diseases. OBJECTIVE: We aimed to develop imaging tools to explore vascular changes in the bone marrow niche during acute inflammation. METHODS AND RESULTS: Using the TLR (Toll-like receptor) ligand lipopolysaccharide as a prototypical danger signal, we applied multiparametric, multimodality and multiscale imaging to characterize how the bone marrow vasculature adapts when hematopoiesis boosts leukocyte supply. In response to lipopolysaccharide, ex vivo flow cytometry and histology showed vascular changes to the bone marrow niche. Specifically, proliferating endothelial cells gave rise to new vasculature in the bone marrow during hypoxic conditions. We studied these vascular changes with complementary intravital microscopy and positron emission tomography/magnetic resonance imaging. Fluorescence and positron emission tomography integrin αVß3 imaging signal increased during lipopolysaccharide-induced vascular remodeling. Vascular leakiness, quantified by albumin-based in vivo microscopy and magnetic resonance imaging, rose when neutrophils departed and hematopoietic stem and progenitor cells proliferated more vigorously. CONCLUSIONS: Introducing a tool set to image bone marrow either with cellular resolution or noninvasively within the entire skeleton, this work sheds light on angiogenic responses that accompany emergency hematopoiesis. Understanding and monitoring bone marrow vasculature may provide a key to unlock therapeutic targets regulating systemic inflammation.


Asunto(s)
Médula Ósea/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Tomografía de Emisión de Positrones/métodos , Nicho de Células Madre , Estrés Fisiológico , Animales , Médula Ósea/patología , Células Progenitoras Endoteliales/citología , Femenino , Inflamación/diagnóstico por imagen , Integrina alfaVbeta3/metabolismo , Lipopolisacáridos/toxicidad , Ratones , Ratones Endogámicos C57BL , Imagen Multimodal/métodos
11.
Arterioscler Thromb Vasc Biol ; 38(1): 186-194, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29146749

RESUMEN

OBJECTIVE: The endothelium has a crucial role in wound healing, acting as a barrier to control transit of leukocytes. Endothelial barrier function is impaired in atherosclerosis preceding myocardial infarction (MI). Besides lowering lipids, statins modulate endothelial function. Here, we noninvasively tested whether statins affect permeability at the inflammatory (day 3) and the reparative (day 7) phase of infarct healing post-MI using contrast-enhanced cardiac magnetic resonance imaging (MRI). APPROACH AND RESULTS: Noninvasive permeability mapping by MRI after MI in C57BL/6, atherosclerotic ApoE-/-, and statin-treated ApoE-/- mice was correlated to subsequent left ventricular outcome by structural and functional cardiac MRI. Ex vivo histology, flow cytometry, and quantitative polymerase chain reaction were performed on infarct regions. Increased vascular permeability at ApoE-/- infarcts was observed compared with C57BL/6 infarcts, predicting enhanced left ventricular dilation at day 21 post-MI by MRI volumetry. Statin treatment improved vascular barrier function at ApoE-/- infarcts, indicated by reduced permeability. The infarcted tissue of ApoE-/- mice 3 days post-MI displayed an unbalanced Vegfa(vascular endothelial growth factor A)/Angpt1 (angiopoetin-1) expression ratio (explaining leakage-prone vessels), associated with higher amounts of CD45+ leukocytes and inflammatory LY6Chi monocytes. Statins reversed the unbalanced Vegfa/Angpt1 expression, normalizing endothelial barrier function at the infarct and blocking the augmented recruitment of inflammatory leukocytes in statin-treated ApoE-/- mice. CONCLUSIONS: Statins lowered permeability and reduced the transit of unfavorable inflammatory leukocytes into the infarcted tissue, consequently improving left ventricular outcome.


Asunto(s)
Permeabilidad Capilar/efectos de los fármacos , Medios de Contraste/administración & dosificación , Vasos Coronarios/efectos de los fármacos , Vasos Coronarios/diagnóstico por imagen , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/diagnóstico por imagen , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Imagen por Resonancia Magnética , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/tratamiento farmacológico , Cicatrización de Heridas/efectos de los fármacos , Angiopoyetina 1/metabolismo , Animales , Quimiotaxis de Leucocito/efectos de los fármacos , Vasos Coronarios/metabolismo , Vasos Coronarios/patología , Modelos Animales de Enfermedad , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Mediadores de Inflamación/metabolismo , Leucocitos/efectos de los fármacos , Leucocitos/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Valor Predictivo de las Pruebas , Factores de Tiempo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Función Ventricular Izquierda/efectos de los fármacos , Remodelación Ventricular/efectos de los fármacos
12.
Circ Cardiovasc Imaging ; 10(4)2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28360260

RESUMEN

Cardiovascular diseases are a consequence of genetic and environmental risk factors that together generate arterial wall and cardiac pathologies. Blood vessels connect multiple systems throughout the entire body and allow organs to interact via circulating messengers. These same interactions facilitate nervous and metabolic system's influence on cardiovascular health. Multiparametric imaging offers the opportunity to study these interfacing systems' distinct processes, to quantify their interactions, and to explore how these contribute to cardiovascular disease. Noninvasive multiparametric imaging techniques are emerging tools that can further our understanding of this complex and dynamic interplay. Positron emission tomography/magnetic resonance imaging and multichannel optical imaging are particularly promising because they can simultaneously sample multiple biomarkers. Preclinical multiparametric diagnostics could help discover clinically relevant biomarker combinations pivotal for understanding cardiovascular disease. Interfacing systems important to cardiovascular disease include the immune, nervous, and hematopoietic systems. These systems connect with classical cardiovascular organs, such as the heart and vasculature, and with the brain. The dynamic interplay between these systems and organs enables processes, such as hemostasis, inflammation, angiogenesis, matrix remodeling, metabolism, and fibrosis. As the opportunities provided by imaging expand, mapping interconnected systems will help us decipher the complexity of cardiovascular disease and monitor novel therapeutic strategies.


Asunto(s)
Enfermedades Cardiovasculares/diagnóstico por imagen , Sistema Cardiovascular/efectos de los fármacos , Imagen Multimodal/métodos , Biología de Sistemas/métodos , Integración de Sistemas , Animales , Biomarcadores/sangre , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/fisiopatología , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/fisiopatología , Marcadores Genéticos , Predisposición Genética a la Enfermedad , Sistema Hematopoyético/metabolismo , Sistema Hematopoyético/fisiopatología , Humanos , Mediadores de Inflamación/sangre , Neuroinmunomodulación , Fenotipo , Valor Predictivo de las Pruebas , Pronóstico
13.
NMR Biomed ; 29(11): 1500-1510, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27604064

RESUMEN

Noninvasive preclinical methods for the characterization of myocardial vascular function are crucial to an understanding of the dynamics of ischemic cardiac disease. Ischemic heart disease is associated with myocardial endothelial dysfunction, resulting in leakage of plasma albumin into the extravascular space. These features can be harnessed in a novel noninvasive three-dimensional magnetic resonance imaging method to measure fractional blood volume (fBV) and vascular permeability (permeability-surface area product, PS) using labeled albumin as a blood pool contrast agent. C57BL/6 mice were imaged before and 3 days after myocardial infarction (MI). Following the quantification of endogenous myocardial R1 , the dynamics of intravenously injected albumin-based contrast agent, extravasating from permeable myocardial blood vessels, were tracked on short-axis magnetic resonance images of the entire heart. This study successfully discriminated between infarcted and remote regions at 3 days post-infarct, based on a reduced fBV and increased PS in the infarcted region. These findings were confirmed using ex vivo fluorescence imaging and histology. We have demonstrated a novel method to quantify blood volume and permeability in the infarcted myocardium, providing an imaging biomarker for the assessment of endothelial dysfunction. This method has the potential to three-dimensionally visualize subtle changes in myocardial permeability and to track endothelial function for longitudinal cardiac studies determining pathophysiological processes during infarct healing.


Asunto(s)
Técnicas de Imagen Cardíaca/métodos , Aumento de la Imagen/métodos , Imagen por Resonancia Cinemagnética/métodos , Isquemia Miocárdica/diagnóstico por imagen , Albúmina Sérica Bovina , Disfunción Ventricular Izquierda/diagnóstico por imagen , Animales , Medios de Contraste , Masculino , Ratones , Ratones Endogámicos C57BL , Isquemia Miocárdica/complicaciones , Isquemia Miocárdica/patología , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Disfunción Ventricular Izquierda/etiología , Disfunción Ventricular Izquierda/patología
14.
Prog Nucl Magn Reson Spectrosc ; 88-89: 1-47, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26282195

RESUMEN

The use of MR imaging and spectroscopy for studying cardiovascular disease processes in small animals has increased tremendously over the past decade. This is the result of the remarkable advances in MR technologies and the increased availability of genetically modified mice. MR techniques provide a window on the entire timeline of cardiovascular disease development, ranging from subtle early changes in myocardial metabolism that often mark disease onset to severe myocardial dysfunction associated with end-stage heart failure. MR imaging and spectroscopy techniques play an important role in basic cardiovascular research and in cardiovascular disease diagnosis and therapy follow-up. This is due to the broad range of functional, structural and metabolic parameters that can be quantified by MR under in vivo conditions non-invasively. This review describes the spectrum of MR techniques that are employed in small animal cardiovascular disease research and how the technological challenges resulting from the small dimensions of heart and blood vessels as well as high heart and respiratory rates, particularly in mice, are tackled.


Asunto(s)
Enfermedades Cardiovasculares/diagnóstico por imagen , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Animales , Enfermedades Cardiovasculares/fisiopatología , Corazón/anatomía & histología , Corazón/diagnóstico por imagen , Corazón/fisiopatología , Humanos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética/métodos , Ratones , Radiografía
15.
Artículo en Inglés | MEDLINE | ID: mdl-25550399

RESUMEN

BACKGROUND: Application of emerging molecular MRI techniques, including chemical exchange saturation transfer (CEST)-MRI, to cardiac imaging is desirable; however, conventional methods are poorly suited for cardiac imaging, particularly in small animals with rapid heart rates. We developed a CEST-encoded steady state and retrospectively gated cardiac cine imaging sequence in which the presence of fibrosis or paraCEST contrast agents was directly encoded into the steady-state myocardial signal intensity (cardioCEST). METHODS AND RESULTS: Development of cardioCEST: A CEST-encoded cardiac cine MRI sequence was implemented on a 9.4T small animal scanner. CardioCEST of fibrosis was serially performed by acquisition of a series of CEST-encoded cine images at multiple offset frequencies in mice (n=7) after surgically induced myocardial infarction. Scar formation was quantified using a spectral modeling approach and confirmed with histological staining. Separately, circulatory redistribution kinetics of the paramagnetic CEST agent Eu-HPDO3A were probed in mice using cardioCEST imaging, revealing rapid myocardial redistribution, and washout within 30 minutes (n=6). Manipulation of vascular tone resulted in heightened peak CEST contrast in the heart, but did not alter redistribution kinetics (n=6). At 28 days after myocardial infarction (n=3), CEST contrast kinetics in infarct zone tissue were altered, demonstrating gradual accumulation of Eu-HPDO3A in the increased extracellular space. CONCLUSIONS: cardioCEST MRI enables in vivo imaging of myocardial fibrosis using endogenous contrast mechanisms, and of exogenously delivered paraCEST agents, and can enable multiplexed imaging of multiple molecular targets at high-resolution coupled with conventional cardiac MRI scans.


Asunto(s)
Medios de Contraste , Compuestos Heterocíclicos , Imagen por Resonancia Cinemagnética , Imagen Molecular/métodos , Infarto del Miocardio/patología , Miocardio/patología , Compuestos Organometálicos , Animales , Técnicas de Imagen Sincronizada Cardíacas , Medios de Contraste/farmacocinética , Modelos Animales de Enfermedad , Diseño de Equipo , Estudios de Factibilidad , Fibrosis , Gadolinio/farmacocinética , Compuestos Heterocíclicos/farmacocinética , Interpretación de Imagen Asistida por Computador , Imagen por Resonancia Cinemagnética/instrumentación , Masculino , Ratones Endogámicos C57BL , Imagen Molecular/instrumentación , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Compuestos Organometálicos/farmacocinética , Valor Predictivo de las Pruebas , Remodelación Ventricular
16.
Circ Cardiovasc Imaging ; 6(6): 992-1000, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24134954

RESUMEN

BACKGROUND: Akt1 is a key signaling molecule in multiple cell types, including endothelial cells. Accordingly, Akt1 was proposed as a therapeutic target for ischemic injury in the context of myocardial infarction (MI). The aim of this study was to use multimodal in vivo imaging to investigate the impact of systemic Akt1 deficiency on cardiac function and angiogenesis before and after MI. METHODS AND RESULTS: In vivo cardiac MRI was performed before and at days 1, 8, 15, and 29 to 30 after MI induction for wild-type, heterozygous, and Akt1-deficient mice. Noninfarcted hearts were imaged using ex vivo stereomicroscopy and microcomputed tomography. Histological examination was performed for noninfarcted hearts and for hearts at days 8 and 29 to 30 after MI. MRI revealed mildly decreased baseline cardiac function in Akt1 null mice, whereas ex vivo stereomicroscopy and microcomputed tomography revealed substantially reduced coronary macrovasculature. After MI, Akt1(-/-) mice demonstrated significantly attenuated ventricular remodeling and a smaller decrease in ejection fraction. At 8 days after MI, a larger functional capillary network at the remote and border zone, accompanied by reduced scar extension, preserved cardiac function, and enhanced border zone wall thickening, was observed in Akt1(-/-) mice when compared with littermate controls. CONCLUSIONS: Using multimodal imaging to probe the role of Akt1 in cardiac function and remodeling after MI, this study revealed reduced adverse remodeling in Akt1-deficient mice after MI. Augmented myocardial angiogenesis coupled with a more functional myocardial capillary network may facilitate revascularization and therefore be responsible for preservation of infarcted myocardium.


Asunto(s)
Circulación Coronaria , Vasos Coronarios/patología , Infarto del Miocardio/metabolismo , Neovascularización Patológica/metabolismo , Proteínas Proto-Oncogénicas c-akt/deficiencia , Remodelación Ventricular , Animales , Vasos Coronarios/metabolismo , Femenino , Estudios de Seguimiento , Imagen por Resonancia Cinemagnética , Masculino , Ratones , Ratones Noqueados , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/fisiopatología , Neovascularización Patológica/diagnóstico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Microtomografía por Rayos X
17.
Physiol Rep ; 1(6): e00143, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24400145

RESUMEN

Even though congenital heart disease is the most prevalent malformation, little is known about how mutations affect cardiovascular function during development. Akt1 is a crucial intracellular signaling molecule, affecting cell survival, proliferation, and metabolism. The aim of this study was to determine the role of Akt1 on prenatal cardiac development. In utero echocardiography was performed in fetal wild-type, heterozygous, and Akt1-deficient mice. The same fetal hearts were imaged using ex vivo micro-computed tomography (µCT) and histology. Neonatal hearts were imaged by in vivo magnetic resonance imaging. Additional ex vivo neonatal hearts were analyzed using histology and real-time PCR of all three groups. In utero echocardiography revealed abnormal blood flow patterns at the mitral valve and reduced contractile function of Akt1 null fetuses, while ex vivo µCT and histology unraveled structural alterations such as dilated cardiomyopathy and ventricular septum defects in these fetuses. Further histological analysis showed reduced myocardial capillaries and coronary vessels in Akt1 null fetuses. At neonatal age, Akt1-deficient mice exhibited reduced survival with reduced endothelial cell density in the myocardium and attenuated cardiac expression of vascular endothelial growth factor A and collagen Iα1. To conclude, this study revealed a central role of Akt1 in fetal cardiac function and myocardial angiogenesis inducing fetal cardiomyopathy and reduced neonatal survival. This study links a specific physiological phenotype with a defined genotype, namely Akt1 deficiency, in an attempt to pinpoint intrinsic causes of fetal cardiomyopathies.

18.
Magn Reson Med ; 66(1): 235-43, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21254214

RESUMEN

Inflammatory bowel disease is a chronic inflammatory disorder of the gastrointestinal tract associated with alterations and dysfunction of the intestinal microvasculature. The goal of this work was to develop a preclinical protocol for quantitative functional characterization of the colonic microvasculature in a murine colitis model. Experimental colitis was induced in mice by addition of dextran sodium sulfate to the drinking water. Histopathologic analysis revealed severe multifocal colitis. Dynamics of intravenously injected macromolecular dextran-FITC and biotin-BSA-GdDTPA in the colonic microvasculature were imaged using fluorescent confocal endomicroscopy and MRI (9.4 T), respectively. Both MRI and fluorescent confocal endomicroscopy revealed a substantial increase in the permeability of the colonic microvasculature associated with colitis, resulting in extravascular accumulation of the macromolecular contrast agent in the lumen of the colon. MRI data were validated by immunohistochemical staining of the contrast agent and leakage of fluorescently labeled BSA-FAM coinjected with the MRI contrast agent. Leakage of plasma proteins and deposition of a provisional matrix can support inflammation and stimulate remodeling of the colonic vasculature. Thus, the plasma protein leakage from the colonic microvasculature at the focal inflammatory patches could be quantified by MRI, providing a biomarker for assessment of disease progression.


Asunto(s)
Colitis/diagnóstico , Colon/irrigación sanguínea , Colon/patología , Medios de Contraste , Imagen por Resonancia Magnética , Animales , Biomarcadores , Colitis/inducido químicamente , Medios de Contraste/administración & dosificación , Modelos Animales de Enfermedad , Bombas de Infusión , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente
19.
Biol Reprod ; 84(3): 537-45, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20980686

RESUMEN

The importance of placental circulation is exemplified by the correlation of placental size and blood flow with fetal weight and survival during normal and compromised human pregnancies in such conditions as preeclampsia and intrauterine growth restriction (IUGR). Using noninvasive magnetic resonance imaging, we evaluated the role of PKBalpha/AKT1, a major mediator of angiogenesis, on placental vascular function. PKBalpha/AKT1 deficiency reduced maternal blood volume fraction without affecting the integrity of the fetomaternal blood barrier. In addition to angiogenesis, PKBalpha/AKT1 regulates additional processes related to survival and growth. In accordance with reports in adult mice, we demonstrated a role for PKBalpha/AKT1 in regulating chondrocyte organization in fetal long bones. Using tetraploid complementation experiments with PKBalpha/AKT1-expressing placentas, we found that although placental PKBalpha/AKT1 restored fetal survival, fetal PKBalpha/AKT1 regulated fetal size, because tetraploid complementation did not prevent intrauterine growth retardation. Histological examination of rescued fetuses showed reduced liver blood vessel and renal glomeruli capillary density in PKBalpha/Akt1 null fetuses, both of which were restored by tetraploid complementation. However, bone development was still impaired in tetraploid-rescued PKBalpha/Akt1 null fetuses. Although PKBalpha/AKT1-expressing placentas restored chondrocyte cell number in the hypertrophic layer of humeri, fetal PKBalpha/AKT1 was found to be necessary for chondrocyte columnar organization. Remarkably, a dose-dependent phenotype was exhibited for PKBalpha/AKT1 when examining PKBalpha/Akt1 heterozygous fetuses as well as those complemented by tetraploid placentas. The differential role of PKBalpha/AKT1 on mouse fetal survival and growth may shed light on its roles in human IUGR.


Asunto(s)
Tamaño Corporal/genética , Viabilidad Fetal/genética , Feto/fisiología , Placenta/metabolismo , Proteínas Proto-Oncogénicas c-akt/fisiología , Animales , Embrión de Mamíferos , Femenino , Retardo del Crecimiento Fetal/genética , Retardo del Crecimiento Fetal/metabolismo , Retardo del Crecimiento Fetal/patología , Viabilidad Fetal/fisiología , Feto/metabolismo , Edad Gestacional , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Noqueados , Embarazo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo
20.
Contrast Media Mol Imaging ; 5(4): 213-22, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20812289

RESUMEN

Transglutaminases, including factor XIII and tissue transglutaminase, participate in multiple extracellular processes associated with remodeling of the extracellular matrix during wound repair, blood clotting, tumor progression and fibrosis of ischemic injuries. The aim of this work was to evaluate a novel substrate analog for transglutaminase optimized by molecular modeling calculations (DCCP16), which can serve for molecular imaging of transglutaminase activity by magnetic resonance imaging and by near-infrared imaging. Experimental data showed covalent binding of Gd-DCCP16 and DCCP16-IRIS Blue to human clots, to basement membrane components and to casein in purified systems as well as in three-dimensional multicellular spheroids. In vivo, DCCP16 showed enhancement with a prolonged retention in clots and tumors, demonstrating the ability to detect both factor XIII and tissue transglutaminase mediated covalent binding of the contrast material.


Asunto(s)
Medios de Contraste/química , Complejos de Coordinación/química , Factor XIII/química , Colorantes Fluorescentes/química , Indoles/química , Imagen por Resonancia Magnética , Péptidos/química , Transglutaminasas/metabolismo , Animales , Factor XIII/metabolismo , Humanos , Ratones , Ratones Endogámicos , Esferoides Celulares/metabolismo , Transglutaminasas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...