Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Lab Chip ; 23(19): 4276-4286, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37668159

RESUMEN

Current single-cell technologies require large and expensive equipment, limiting their use to specialized labs. In this paper, we present for the first time a microfluidic device which demonstrates a combined method for full-electric cell capturing, analyzing, and selectively releasing with single-cell resolution. All functionalities are experimentally demonstrated on Saccharomyces cerevisiae. Our microfluidic platform consists of traps centered around a pair of individually accessible coplanar electrodes, positioned under a microfluidic channel. Using this device, we validate our novel Two-Voltage method for trapping single cells by positive dielectrophoresis (pDEP). Cells are attracted to the trap when a high voltage (VH) is applied. A low voltage (VL) holds the already trapped cell in place without attracting additional cells, allowing full control over the number of trapped cells. After trapping, the cells are analyzed by broadband electrochemical impedance spectroscopy. These measurements allow the detection of single cells and the extraction of cell parameters. Additionally, these measurements show a strong correlation between average phase change and cell size, enabling the use of our system for size measurements in biological applications. Finally, our device allows selectively releasing trapped cells by turning off the pDEP signal in their trap. The experimental results show the techniques potential as a full-electric single-cell analysis tool with potential for miniaturization and automation which opens new avenues towards small-scale, high throughput single-cell analysis and sorting lab-on-CMOS devices.


Asunto(s)
Espectroscopía Dieléctrica , Microfluídica , Automatización , Movimiento Celular , Tamaño de la Célula , Saccharomyces cerevisiae
2.
Microbiol Res ; 271: 127361, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36921400

RESUMEN

Filamentous fungi can sense useful resources and hazards in their environment and direct growth of their hyphae accordingly. Chemotropism ensures access to nutrients, contact with other individuals (e.g., for mating), and interaction with hosts in the case of pathogens. Previous studies have revealed a complex chemotropic sensing landscape during host-pathogen interactions, but the underlying molecular machinery remains poorly characterized. Here we studied mechanisms controlling directed hyphal growth of the important plant-pathogenic fungus Verticillium dahliae towards different chemoattractants. We found that the homologs of the Rag GTPase Gtr1 and the GTPase-activating protein Tsc2, an activator and a repressor of the TOR kinase respectively, play important roles in hyphal chemotropism towards nutrients, plant-derived signals, and heterologous α-pheromone of Fusarium oxysporum. Furthermore, important roles of these regulators were identified in fungal development and pathogenicity. We also found that the mitogen-activated protein kinase (MAPK) Fus3 is required for chemotropism towards nutrients, while the G protein-coupled receptor (GPCR) Ste2 and the MAPK Slt2 control chemosensing of plant-derived signals and α-pheromone. Our study establishes V. dahliae as a suitable model system for the analysis of fungal chemotropism and discovers new components of chemotropic signaling during growth and host-pathogen interactions of V. dahliae.


Asunto(s)
Ascomicetos , Verticillium , Humanos , Virulencia , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Ascomicetos/metabolismo , Feromonas/metabolismo , Proteínas Fúngicas/metabolismo , Enfermedades de las Plantas
3.
Front Microbiol ; 14: 1121993, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36922966

RESUMEN

The enzymatic arsenal of several soil microorganisms renders them particularly suitable for the degradation of lignocellulose, a process of distinct ecological significance with promising biotechnological implications. In this study, we investigated the spatiotemporal diversity and distribution of bacteria and fungi with 16S and Internally Trascribed Spacer (ITS) ribosomal RNA next-generation-sequencing (NGS), focusing on forest mainland Abies cephalonica and insular Quercus ilex habitats of Greece. We analyzed samples during winter and summer periods, from different soil depths, and we applied optimized and combined targeted meta-omics approaches aiming at the peroxidase-catalase family enzymes to gain insights into the lignocellulose degradation process at the soil microbial community level. The microbial communities recorded showed distinct patterns of response to season, soil depth and vegetation type. Overall, in both forests Proteobacteria, Actinobacteria, Acidobacteria were the most abundant bacteria phyla, while the other phyla and the super-kingdom of Archaea were detected in very low numbers. Members of the orders Agaricales, Russulales, Sebacinales, Gomphales, Geastrales, Hysterangiales, Thelephorales, and Trechisporales (Basidiomycota), and Pezizales, Sordariales, Eurotiales, Pleosporales, Helotiales, and Diaporthales (Ascomycota) were the most abundant for Fungi. By using optimized "universal" PCR primers that targeted the peroxidase-catalase enzyme family, we identified several known and novel sequences from various Basidiomycota, even from taxa appearing at low abundance. The majority of the sequences recovered were manganese peroxidases from several genera of Agaricales, Hysterangiales, Gomphales, Geastrales, Russulales, Hymenochaetales, and Trechisporales, while lignin -and versatile-peroxidases were limited to two to eight species, respectively. Comparisons of the obtained sequences with publicly available data allowed a detailed structural analysis of polymorphisms and functionally relevant amino-acid residues at phylogenetic level. The targeted metagenomics applied here revealed an important role in lignocellulose degradation of hitherto understudied orders of Basidiomycota, such as the Hysterangiales and Gomphales, while it also suggested the auxiliary activity of particular members of Proteobacteria, Actinobacteria, Acidobacteria, Verrucomicrobia, and Gemmatimonadetes. The application of NGS-based metagenomics approaches allows a better understanding of the complex process of lignocellulolysis at the microbial community level as well as the identification of candidate taxa and genes for targeted functional investigations and genetic modifications.

4.
J Fungi (Basel) ; 7(9)2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34575778

RESUMEN

Maintenance of redox homeostasis is vital for aerobic organisms and particularly relevant to plant pathogens. A balance is required between their endogenous ROS production, which is important for their development and pathogenicity, and host-derived oxidative stress. Endogenous ROS in fungi are generated by membrane-bound NADPH oxidase (NOX) complexes and the mitochondrial respiratory chain, while transcription factor Yap1 is a major regulator of the antioxidant response. Here, we investigated the roles of NoxA and Yap1 in fundamental biological processes of the important plant pathogen Verticillium dahliae. Deletion of noxA impaired growth and morphogenesis, compromised formation of hyphopodia, diminished penetration ability and pathogenicity, increased sensitivity against antifungal agents, and dysregulated expression of antioxidant genes. On the other hand, deletion of yap1 resulted in defects in conidial and microsclerotia formation, increased sensitivity against oxidative stress, and down-regulated antioxidant genes. Localized accumulation of ROS was observed before conidial fusion and during the heterokaryon incompatibility reaction upon nonself fusion. The frequency of inviable fusions was not affected by the deletion of Yap1. Analysis of a double knockout mutant revealed an epistatic relationship between noxA and yap1. Our results collectively reveal instrumental roles of NoxA and ROS homeostasis in the biology of V. dahliae.

5.
BMC Biol ; 19(1): 169, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34429100

RESUMEN

BACKGROUND: Asexual fungi include important pathogens of plants and other organisms, and their effective management requires understanding of their evolutionary dynamics. Genetic recombination is critical for adaptability and could be achieved via heterokaryosis - the co-existence of genetically different nuclei in a cell resulting from fusion of non-self spores or hyphae - and the parasexual cycle in the absence of sexual reproduction. Fusion between different strains and establishment of viable heterokaryons are believed to be rare due to non-self recognition systems. Here, we investigate the extent and mechanisms of cell fusion and heterokaryosis in the important asexual plant pathogen Verticillium dahliae. RESULTS: We used live-cell imaging and genetic complementation assays of tagged V. dahliae strains to analyze the extent of non-self vegetative fusion, heterokaryotic cell fate, and nuclear behavior. An efficient CRISPR/Cas9-mediated system was developed to investigate the involvement of autophagy in heterokaryosis. Under starvation, non-self fusion of germinating spores occurs frequently regardless of the previously assessed vegetative compatibility of the partners. Supposedly "incompatible" fusions often establish viable heterokaryotic cells and mosaic mycelia, where nuclei can engage in fusion or transfer of genetic material. The molecular machinery of autophagy has a protective function against the destruction of "incompatible" heterokaryons. CONCLUSIONS: We demonstrate an imperfect function of somatic incompatibility systems in V. dahliae. These systems frequently tolerate the establishment of heterokaryons and potentially the initiation of the parasexual cycle even between strains that were previously regarded as "incompatible."


Asunto(s)
Núcleo Celular , Hifa , Fusión Celular , Hongos
6.
Curr Genet ; 67(3): 471-485, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33582843

RESUMEN

Cell-to-cell fusion is a fundamental biological process across the tree of life. In filamentous fungi, somatic fusion (or anastomosis) is required for the normal development of their syncytial hyphal networks, and it can initiate non-sexual genetic exchange processes, such as horizontal genetic transfer and the parasexual cycle. Although these could be important drivers of the evolution of asexual fungi, this remains a largely unexplored possibility due to the lack of suitable resources for their study in these puzzling organisms. We thus aimed at the characterization of cell fusion in the important asexual fungus Verticillium dahliae via Conidial Anastomosis Tubes (CATs), which can be useful for the analysis of parasexuality. We optimized appropriate procedures for their highly reproducible quantification and live-cell imaging, which were used to characterize their physiology and cell biology, and to start elucidating their underlying genetic machinery. Formation of CATs was shown to depend on growth conditions and require functional Fus3 and Slt2 MAP kinases, as well as the NADPH oxidase NoxA, whereas the GPCR Ste2 and the mating-type protein MAT1-2-1 were dispensable. We show that nuclei and other organelles can migrate through CATs, which often leads to the formation of transient dikaryons. Their nuclei have possible windows of opportunity for genetic interaction before degradation of one by a presumably homeostatic mechanism. We establish here CAT-mediated fusion in V. dahliae as an experimentally convenient system for the cytological analysis of fungal non-sexual genetic interactions. We expect that it will facilitate the dissection of sexual alternatives in asexual fungi.


Asunto(s)
Acremonium/genética , Proteínas Fúngicas/genética , Reproducción Asexuada/genética , Esporas Fúngicas/genética , Acremonium/patogenicidad , Ascomicetos/genética , Ascomicetos/patogenicidad , Núcleo Celular/genética , Transferencia de Gen Horizontal/genética , Genes del Tipo Sexual de los Hongos/genética , Hifa/genética , Hifa/crecimiento & desarrollo , Proteínas Quinasas Activadas por Mitógenos/genética , NADPH Oxidasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Esporas Fúngicas/crecimiento & desarrollo
7.
J Fungi (Basel) ; 6(4)2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33297524

RESUMEN

Woronin bodies are membrane-bound organelles of filamentous ascomycetes that mediate hyphal compartmentalization by plugging septal pores upon hyphal damage. Their major component is the peroxisomal protein Hex1, which has also been implicated in additional cellular processes in fungi. Here, we analyzed the Hex1 homolog of Verticillium dahliae, an important asexual plant pathogen, and we report its pleiotropic involvement in fungal growth, physiology, stress response, and pathogenicity. Alternative splicing of the Vdhex1 gene can lead to the production of two Hex1 isoforms, which are structurally similar to their Neurospora crassa homolog. We show that VdHex1 is targeted to the septum, consistently with its demonstrated function in sealing hyphal compartments to prevent excessive cytoplasmic bleeding upon injury. Furthermore, our investigation provides direct evidence for significant contributions of Hex1 in growth and morphogenesis, as well as in asexual reproduction capacity. We discovered that Hex1 is required both for normal responses to osmotic stress and factors that affect the cell wall and plasma-membrane integrity, and for normal resistance to oxidative stress and reactive oxygen species (ROS) homeostasis. The Vdhex1 mutant exhibited diminished ability to colonize and cause disease on eggplant. Overall, we show that Hex1 has fundamentally important multifaceted roles in the biology of V. dahliae.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...