Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Data ; 11(1): 478, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724554

RESUMEN

Soil organic carbon (SOC) is a soil health indicator and understanding dynamics changing SOC stocks will help achieving net zero goals. Here we present four datasets featuring 11,750 data points covering co-located aboveground and below-ground metrics for exploring ecosystem SOC dynamics. Five sites across England with an established land use contrast, grassland and woodland next to each other, were rigorously sampled for aboveground (n = 109), surface (n = 33 soil water release curves), topsoil, and subsoil metrics. Commonly measured soil metrics were analysed in five soil increments for 0-1 metre (n = 4550). Less commonly measured soil metrics which were assumed to change across the soil profile were measured on a subset of samples only (n = 3762). Additionally, we developed a simple method for soil organic matter fractionation using density fractionation which is part of the less common metrics. Finally, soil metrics which may impact SOC dynamics, but with less confidence as to their importance across the soil profile were only measured on topsoil (~5-15 cm = mineral soil) and subsoil (below 50 cm) samples (n = 2567).


Asunto(s)
Carbono , Pradera , Suelo , Suelo/química , Carbono/análisis , Inglaterra , Bosques , Ecosistema
2.
Sci Total Environ ; 806(Pt 2): 150422, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34852431

RESUMEN

This study aimed to simulate oak and beech forest growth under various scenarios of climate change and to evaluate how the forest response depends on site properties and particularly on stand characteristics using the individual process-based model HETEROFOR. First, this model was evaluated on a wide range of site conditions. We used data from 36 long-term forest monitoring plots to initialize, calibrate, and evaluate HETEROFOR. This evaluation showed that HETEROFOR predicts individual tree radial growth and height increment reasonably well under different growing conditions when evaluated on independent sites. In our simulations under constant CO2 concentration ([CO2]cst) for the 2071-2100 period, climate change induced a moderate net primary production (NPP) gain in continental and mountainous zones and no change in the oceanic zone. The NPP changes were negatively affected by air temperature during the vegetation period and by the annual rainfall decrease. To a lower extent, they were influenced by soil extractable water reserve and stand characteristics. These NPP changes were positively affected by longer vegetation periods and negatively by drought for beech and larger autotrophic respiration costs for oak. For both species, the NPP gain was much larger with rising CO2 concentration ([CO2]var) mainly due to the CO2 fertilisation effect. Even if the species composition and structure had a limited influence on the forest response to climate change, they explained a large part of the NPP variability (44% and 34% for [CO2]cst and [CO2]var, respectively) compared to the climate change scenario (5% and 29%) and the inter-annual climate variability (20% and 16%). This gives the forester the possibility to act on the productivity of broadleaved forests and prepare them for possible adverse effects of climate change by reinforcing their resilience.


Asunto(s)
Fagus , Quercus , Cambio Climático , Bosques , Árboles
3.
Sci Total Environ ; 780: 146670, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34030324

RESUMEN

It is increasingly clear that increases in dissolved organic carbon in upland waters in recent decades have often been dominated by acid deposition, but reasons for substantial variation in rates of change remain unclear. This paper focuses on the extent to which spatial properties, such as variation in soil properties, atmospheric deposition and climate, affect the sensitivity of DOC concentrations in soil water. The purpose is to i) examine evidence for differences in site average concentrations and trends in soil water DOC between sites with contrasting ecosystem properties, i.e. vegetation cover and soil type, and ii) identify the wider combination of site characteristics that best explain variation in these DOC metrics between sites. We collated soil water and deposition chemistry, soil chemistry and meteorological data from 15 long-term UK monitoring sites (1992-2010) covering a range of soils, vegetation, climate and acid deposition levels. Mineral soils under forests showed the greatest range of long-term mean DOC concentrations and trends. Regression analysis indicated that acid and sea-salt deposition, and soil sensitivity to acidification were the factors most strongly associated with spatial variation in mean DOC concentrations. Spatial variation in DOC trends were best explained by Al saturation and water flux. Overall, the sensitivity of DOC release from soil to changes in pollutant deposition could be related to the type of vegetation cover and soils chemistry properties, such as Al saturation, divalent base cation content and hydrological regime. The identification of the ecosystem properties that appear most influential in modifying DOC production and responses to long-term drivers, helps elucidate potential mechanistic explanations for differences in DOC dynamics across seemingly similar ecosystems, and points to the importance of DOC mobility in regulating its dynamics.

4.
PeerJ ; 8: e9750, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32974092

RESUMEN

The relatively poor simulation of the below-ground processes is a severe drawback for many ecosystem models, especially when predicting responses to climate change and management. For a meaningful estimation of ecosystem production and the cycling of water, energy, nutrients and carbon, the integration of soil processes and the exchanges at the surface is crucial. It is increasingly recognized that soil biota play an important role in soil organic carbon and nutrient cycling, shaping soil structure and hydrological properties through their activity, and in water and nutrient uptake by plants through mycorrhizal processes. In this article, we review the main soil biological actors (microbiota, fauna and roots) and their effects on soil functioning. We review to what extent they have been included in soil models and propose which of them could be included in ecosystem models. We show that the model representation of the soil food web, the impact of soil ecosystem engineers on soil structure and the related effects on hydrology and soil organic matter (SOM) stabilization are key issues in improving ecosystem-scale soil representation in models. Finally, we describe a new core model concept (KEYLINK) that integrates insights from SOM models, structural models and food web models to simulate the living soil at an ecosystem scale.

5.
Sci Rep ; 10(1): 12418, 2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32709879

RESUMEN

Rising atmospheric CO2 (ca) has been shown to increase forest carbon uptake. Yet, whether the ca-fertilization effect on forests is modulated by changes in sulphur (Sdep) and nitrogen (Ndep) deposition and how Ndep affects ecosystem N availability remains unclear. We explored spatial and temporal (over 30-years) changes in tree-ring δ13C-derived intrinsic water-use efficiency (iWUE), δ18O and δ15N for four species in twelve forests across climate and atmospheric deposition gradients in Britain. The increase in iWUE was not uniform across sites and species-specific underlying physiological mechanisms reflected the interactions between climate and atmospheric drivers (oak and Scots pine), but also an age effect (Sitka spruce). Most species showed no significant trends for tree-ring δ15N, suggesting no changes in N availability. Increase in iWUE was mostly associated with increase in temperature and decrease in moisture conditions across the South-North gradient and over 30-years. However, when excluding Sitka spruce (to account for age or stand development effects), variations in iWUE were significantly associated with changes in ca and Sdep. Our data suggest that overall climate had the prevailing effect on changes in iWUE across the investigated sites. Whereas, detection of Ndep, Sdep and ca signals was partially confounded by structural changes during stand development.

7.
Nature ; 558(7709): 243-248, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29875410

RESUMEN

Explaining the large-scale diversity of soil organisms that drive biogeochemical processes-and their responses to environmental change-is critical. However, identifying consistent drivers of belowground diversity and abundance for some soil organisms at large spatial scales remains problematic. Here we investigate a major guild, the ectomycorrhizal fungi, across European forests at a spatial scale and resolution that is-to our knowledge-unprecedented, to explore key biotic and abiotic predictors of ectomycorrhizal diversity and to identify dominant responses and thresholds for change across complex environmental gradients. We show the effect of 38 host, environment, climate and geographical variables on ectomycorrhizal diversity, and define thresholds of community change for key variables. We quantify host specificity and reveal plasticity in functional traits involved in soil foraging across gradients. We conclude that environmental and host factors explain most of the variation in ectomycorrhizal diversity, that the environmental thresholds used as major ecosystem assessment tools need adjustment and that the importance of belowground specificity and plasticity has previously been underappreciated.


Asunto(s)
Biodiversidad , Bosques , Hongos/clasificación , Hongos/fisiología , Interacciones Microbiota-Huesped , Micorrizas/fisiología , Microbiología del Suelo , Europa (Continente) , Hongos/aislamiento & purificación , Mapeo Geográfico
8.
Glob Chang Biol ; 24(8): 3603-3619, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29604157

RESUMEN

Acid deposition arising from sulphur (S) and nitrogen (N) emissions from fossil fuel combustion and agriculture has contributed to the acidification of terrestrial ecosystems in many regions globally. However, in Europe and North America, S deposition has greatly decreased in recent decades due to emissions controls. In this study, we assessed the response of soil solution chemistry in mineral horizons of European forests to these changes. Trends in pH, acid neutralizing capacity (ANC), major ions, total aluminium (Altot ) and dissolved organic carbon were determined for the period 1995-2012. Plots with at least 10 years of observations from the ICP Forests monitoring network were used. Trends were assessed for the upper mineral soil (10-20 cm, 104 plots) and subsoil (40-80 cm, 162 plots). There was a large decrease in the concentration of sulphate (SO42-) in soil solution; over a 10-year period (2000-2010), SO42- decreased by 52% at 10-20 cm and 40% at 40-80 cm. Nitrate was unchanged at 10-20 cm but decreased at 40-80 cm. The decrease in acid anions was accompanied by a large and significant decrease in the concentration of the nutrient base cations: calcium, magnesium and potassium (Bc = Ca2+  + Mg2+  + K+ ) and Altot over the entire dataset. The response of soil solution acidity was nonuniform. At 10-20 cm, ANC increased in acid-sensitive soils (base saturation ≤10%) indicating a recovery, but ANC decreased in soils with base saturation >10%. At 40-80 cm, ANC remained unchanged in acid-sensitive soils (base saturation ≤20%, pHCaCl2 ≤ 4.5) and decreased in better-buffered soils (base saturation >20%, pHCaCl2 > 4.5). In addition, the molar ratio of Bc to Altot either did not change or decreased. The results suggest a long-time lag between emission abatement and changes in soil solution acidity and underline the importance of long-term monitoring in evaluating ecosystem response to decreases in deposition.


Asunto(s)
Monitoreo del Ambiente , Bosques , Suelo/química , Ácidos/química , Europa (Continente) , Concentración de Iones de Hidrógeno , Nitratos/análisis , Nitrógeno/análisis , Potasio/análisis , Contaminantes del Suelo/análisis , Sulfatos/análisis , Azufre/análisis
9.
New Phytol ; 215(3): 977-991, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28586137

RESUMEN

The tree root-mycorhizosphere plays a key role in resource uptake, but also in the adaptation of forests to changing environments. The adaptive foraging mechanisms of ectomycorrhizal (EcM) and fine roots of Picea abies, Pinus sylvestris and Betula pendula were evaluated along a gradient from temperate to subarctic boreal forest (38 sites between latitudes 48°N and 69°N) in Europe. Variables describing tree resource uptake structures and processes (absorptive fine root biomass and morphology, nitrogen (N) concentration in absorptive roots, extramatrical mycelium (EMM) biomass, community structure of root-associated EcM fungi, soil and rhizosphere bacteria) were used to analyse relationships between root system functional traits and climate, soil and stand characteristics. Absorptive fine root biomass per stand basal area increased significantly from temperate to boreal forests, coinciding with longer and thinner root tips with higher tissue density, smaller EMM biomass per root length and a shift in soil microbial community structure. The soil carbon (C) : N ratio was found to explain most of the variability in absorptive fine root and EMM biomass, root tissue density, N concentration and rhizosphere bacterial community structure. We suggest a concept of absorptive fine root foraging strategies involving both qualitative and quantitative changes in the root-mycorrhiza-bacteria continuum along climate and soil C : N gradients.


Asunto(s)
Adaptación Fisiológica , Raíces de Plantas/fisiología , Taiga , Bacterias/metabolismo , Betula/microbiología , Biomasa , Carbono/análisis , Europa (Continente) , Geografía , Modelos Biológicos , Micelio/fisiología , Micorrizas/fisiología , Nitrógeno/análisis , Raíces de Plantas/anatomía & histología , Raíces de Plantas/microbiología , Rizosfera , Microbiología del Suelo
10.
Glob Chang Biol ; 21(12): 4613-26, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26146936

RESUMEN

This study examines the role of tree canopies in processing atmospheric nitrogen (Ndep ) for four forests in the United Kingdom subjected to different Ndep : Scots pine and beech stands under high Ndep (HN, 13-19 kg N ha(-1)  yr(-1) ), compared to Scots pine and beech stands under low Ndep (LN, 9 kg N ha(-1)  yr(-1) ). Changes of NO3 -N and NH4 -N concentrations in rainfall (RF) and throughfall (TF) together with a quadruple isotope approach, which combines δ(18) O, Δ(17) O and δ(15) N in NO3 (-) and δ(15) N in NH4 (+) , were used to assess N transformations by the canopies. Generally, HN sites showed higher NH4 -N and NO3 -N concentrations in RF compared to the LN sites. Similar values of δ(15) N-NO3 (-) and δ(18) O in RF suggested similar source of atmospheric NO3 (-) (i.e. local traffic), while more positive values for δ(15) N-NH4 (+) at HN compared to LN likely reflected the contribution of dry NHx deposition from intensive local farming. The isotopic signatures of the N-forms changed after interacting with tree canopies. Indeed, (15) N-enriched NH4 (+) in TF compared to RF at all sites suggested that canopies played an important role in buffering dry Ndep also at the low Ndep site. Using two independent methods, based on δ(18) O and Δ(17) O, we quantified for the first time the proportion of NO3 (-) in TF, which derived from nitrification occurring in tree canopies at the HN site. Specifically, for Scots pine, all the considered isotope approaches detected biological nitrification. By contrast for the beech, only using the mixing model with Δ(17) O, we were able to depict the occurrence of nitrification within canopies. Our study suggests that tree canopies play an active role in the N cycling within forest ecosystems. Processing of Ndep within canopies should not be neglected and needs further exploration, with the combination of multiple isotope tracers, with particular reference to Δ(17) O.


Asunto(s)
Bosques , Nitrificación , Nitrógeno/análisis , Árboles/química , Inglaterra , Isótopos de Nitrógeno/análisis
11.
Sci Total Environ ; 407(21): 5605-19, 2009 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-19660786

RESUMEN

Both observed and modelled data have been examined from the ten UN-ECE Level II forest intensive monitoring sites in the UK to determine the changes and potential impact on soil solution chemistry resulting from changes in acid deposition inputs. The sites represent a range of forest tree types, soil sensitivities and pollutant deposition inputs found in the UK. The dynamic biogeochemical SAFE model was used to explore temporal changes in soil and soil solution chemical parameters that have been used as indicators for potential forest ecosystem and tree damage in national and international assessments of critical loads. The observed data and model results show that there is significant inter-site variation. The model indicates that the historical pollutant inputs have resulted in significant soil acidification at most of the sites. Model predictions generally match current day observations. Recently declining pollutant inputs have reduced and in some cases reversed the trend of increasing soil acidification. A discussion of the results in terms of critical loads, recovery, their wider implications and uncertainty is presented.


Asunto(s)
Monitoreo del Ambiente , Modelos Teóricos , Suelo , Árboles , Ecosistema , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA