Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Eur Radiol ; 33(4): 2861-2870, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36435876

RESUMEN

OBJECTIVES: We aim to validate 3D CRANI, a novel high-field STIR TSE, MR neurography sequence in the visualisation of the extraforaminal cranial and occipital nerve branches on a 3-T system. Furthermore, we wish to evaluate the role of gadolinium administration and calculate nerve benchmark values for future reference. METHODS: Eleven consecutive patients underwent MR imaging including the 3D CRANI sequence before and immediately after intravenous gadolinium administration. Two observers rated suppression quality and nerve visualisation using Likert scales before and after contrast administration. Extraforaminal cranial and occipital nerves were assessed. Nerve calibers and signal intensities were measured at predefined anatomical landmarks, and apparent signal intensity ratios were calculated. RESULTS: The assessed segments of the cranial and occipital nerves could be identified in most cases. The overall intrarater agreement was 79.2% and interrater agreement was 82.7% (intrarater κ = .561, p < .0001; interrater κ = .642, p < .0001). After contrast administration, this significantly improved to an intrarater agreement of 92.7% and interrater agreement of 93.6% (intrarater κ = .688, p < .0001; interrater κ = .727, p < .0001). Contrast administration improved suppression quality and significant changes in nerve caliber and signal intensity measurements. Nerve diameter and signal intensity benchmarking values were obtained. CONCLUSION: 3D CRANI is reliable for the visualization of the extraforaminal cranial and occipital nerves. Intravenous gadolinium significantly improves MR neurography when applying this sequence. Benchmarking data are published to allow future assessment of the 3D CRANI sequence in patients with pathology of the extraforaminal cranial and occipital nerves. KEY POINTS: • MR neurography using the 3D CRANI sequence is a reliable method to evaluate the extraforaminal cranial and occipital nerves. • Gadolinium contrast administration significantly improves suppression quality and nerve visualisation. • Benchmarking values including apparent signal intensity ratios and nerve calibers depend on contrast administration and might play an important role in future studies evaluating extraforaminal cranial and occipital neuropathies.


Asunto(s)
Gadolinio , Enfermedades del Sistema Nervioso Periférico , Humanos , Nervios Periféricos , Imagen por Resonancia Magnética/métodos , Cráneo , Imagenología Tridimensional/métodos
2.
Arch Orthop Trauma Surg ; 139(6): 795-805, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30737593

RESUMEN

INTRODUCTION: Re-establishing anatomic rotational alignment of shaft fractures of the lower extremities remains challenging. Clinical evaluation in combination with radiological measurements is important in pre- and post-surgical assessment. Based on computed tomography (CT), a range of reference values for femoral torsion (FT) and tibial torsion (TT) have historically been reported, which require standardization to optimize the significant intra- and inter-observer variability. The aims of this study were (re-)evaluation of the reference FT and TT angles, determination of the normal intra-individual side-to-side torsional differences to aid the surgical decision-making process for reoperation, and development of a novel 3D measurement method for FT. MATERIALS AND METHODS: In this retrospective study, we included 55 patients, without any known torsional deformities of the lower extremities. Two radiologists, independently, measured the rotational profile of the femora using the Hernandez and Weiner CT methods for FT, and the tibiae using the bimalleolar method for TT. The intra-individual side-to-side difference in paired femora and paired tibiae was determined. A 3D technique for FT assessment using InSpace® was designed. RESULTS: FT and TT demographic values were lower than previously reported, with mean FT values of 5.1°-8.8° and mean TT values of 25.5°-27.7°. Maximal side-to-side differences were 12°-13° for FT and 12° for TT. The Weiner method for FT was less variable than the Hernandez method. The new 3D method was equivocal to the conventional CT measurements. CONCLUSION: The results from this study showed that the maximal side-to-side tolerance in asymptomatic normal adult lower extremities is 12°-13° for FT and 12° for TT, which could be a useful threshold for surgeons as indication for revision surgery (e.g., derotational osteotomy). We developed a new 3D CT method for FT measurement which is similar to 2D and could be used in the future for virtual 3D planning.


Asunto(s)
Deformidades Congénitas de las Extremidades Inferiores , Extremidad Inferior , Osteotomía , Tomografía Computarizada por Rayos X/métodos , Anomalía Torsional , Humanos , Extremidad Inferior/diagnóstico por imagen , Extremidad Inferior/cirugía , Deformidades Congénitas de las Extremidades Inferiores/diagnóstico por imagen , Deformidades Congénitas de las Extremidades Inferiores/cirugía , Osteotomía/métodos , Osteotomía/normas , Estudios Retrospectivos , Anomalía Torsional/diagnóstico por imagen , Anomalía Torsional/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA