Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38352461

RESUMEN

Plasmodium parasites, the causal agents of malaria, are eukaryotic organisms that obligately undergo sexual recombination within mosquitoes. However, in low transmission settings where most mosquitoes become infected with only a single parasite clone, parasites recombine with themselves, and the clonal lineage is propagated rather than broken up by outcrossing. We investigated whether stochastic/neutral factors drive the persistence and abundance of Plasmodium falciparum clonal lineages in Guyana, a country with relatively low malaria transmission, but the only setting in the Americas in which an important artemisinin resistance mutation (pfk13 C580Y) has been observed. To investigate whether this clonality was potentially associated with the persistence and spatial spread of the mutation, we performed whole genome sequencing on 1,727 Plasmodium falciparum samples collected from infected patients across a five-year period (2016-2021). We characterized the relatedness between each pair of monoclonal infections (n=1,409) through estimation of identity by descent (IBD) and also typed each sample for known or candidate drug resistance mutations. A total of 160 clones (mean IBD ≥ 0.90) were circulating in Guyana during the study period, comprising 13 highly related clusters (mean IBD ≥ 0.40). In the five-year study period, we observed a decrease in frequency of a mutation associated with artemisinin partner drug (piperaquine) resistance (pfcrt C350R) and limited co-occurence of pfcrt C350R with duplications of plasmepsin 2/3, an epistatic interaction associated with piperaquine resistance. We additionally report polymorphisms exhibiting evidence of selection for drug resistance or other phenotypes and reported a novel pfk13 mutation (G718S) as well as 61 nonsynonymous substitutions that increased markedly in frequency. However, P. falciparum clonal dynamics in Guyana appear to be largely driven by stochastic factors, in contrast to other geographic regions. The use of multiple artemisinin combination therapies in Guyana may have contributed to the disappearance of the pfk13 C580Y mutation.

2.
Mol Ecol Resour ; 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36847356

RESUMEN

Understanding landscape connectivity has become a global priority for mitigating the impact of landscape fragmentation on biodiversity. Connectivity methods that use link-based methods traditionally rely on relating pairwise genetic distance between individuals or demes to their landscape distance (e.g., geographic distance, cost distance). In this study, we present an alternative to conventional statistical approaches to refine cost surfaces by adapting the gradient forest approach to produce a resistance surface. Used in community ecology, gradient forest is an extension of random forest, and has been implemented in genomic studies to model species genetic offset under future climatic scenarios. By design, this adapted method, resGF, has the ability to handle multiple environmental predicators and is not subjected to traditional assumptions of linear models such as independence, normality and linearity. Using genetic simulations, resistance Gradient Forest (resGF) performance was compared to other published methods (maximum likelihood population effects model, random forest-based least-cost transect analysis and species distribution model). In univariate scenarios, resGF was able to distinguish the true surface contributing to genetic diversity among competing surfaces better than the compared methods. In multivariate scenarios, the gradient forest approach performed similarly to the other random forest-based approach using least-cost transect analysis but outperformed MLPE-based methods. Additionally, two worked examples are provided using two previously published data sets. This machine learning algorithm has the potential to improve our understanding of landscape connectivity and inform long-term biodiversity conservation strategies.

3.
Microb Genom ; 7(12)2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34904938

RESUMEN

The invasive plant pathogen Xylella fastidiosa currently threatens European flora through the loss of economically and culturally important host plants. This emerging vector-borne bacterium, native to the Americas, causes several important diseases in a wide range of plants including crops, ornamentals, and trees. Previously absent from Europe, and considered a quarantine pathogen, X. fastidiosa was first detected in Apulia, Italy in 2013 associated with a devastating disease of olive trees (Olive Quick Decline Syndrome, OQDS). OQDS has led to significant economic, environmental, cultural, as well as political crises. Although the biology of X. fastidiosa diseases have been studied for over a century, there is still no information on the determinants of specificity between bacterial genotypes and host plant species, which is particularly relevant today as X. fastidiosa is expanding in the naive European landscape. We analysed the genomes of 79 X. fastidiosa samples from diseased olive trees across the affected area in Italy as well as genomes of the most genetically closely related strains from Central America. We provided insights into the ecological and evolutionary emergence of this pathogen in Italy. We first showed that the outbreak in Apulia is due to a single introduction from Central America that we estimated to have occurred in 2008 [95 % HPD: 1930-2016]. By using a combination of population genomic approaches and evolutionary genomics methods, we further identified a short list of genes that could play a major role in the adaptation of X. fastidiosa to this new environment. We finally provided experimental evidence for the adaptation of the strain to this new environment.


Asunto(s)
Olea/microbiología , Secuenciación Completa del Genoma/métodos , Xylella/clasificación , Adaptación Fisiológica , América Central , Genoma Bacteriano , Secuenciación de Nucleótidos de Alto Rendimiento , Italia , Filogenia , Filogeografía , Enfermedades de las Plantas/microbiología , Xylella/genética , Xylella/aislamiento & purificación
4.
J Evol Biol ; 34(6): 910-923, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33484040

RESUMEN

Climate change is impacting locally adapted species such as the keystone tree species cork oak (Quercus suber L.). Quantifying the importance of environmental variables in explaining the species distribution can help build resilient populations in restoration projects and design forest management strategies. Using landscape genomics, we investigated the population structure and ecological adaptation of this tree species across the Mediterranean Basin. We applied genotyping by sequencing and derived 2,583 single nucleotide polymorphism markers genotyped from 81 individuals across 17 sites in the studied region. We implemented an approach based on the nearest neighbour haplotype 'coancestry' and uncovered a weak population structure along an east-west climatic gradient across the Mediterranean region. We identified genomic regions potentially involved in local adaptation and predicted differences in the genetic composition across the landscape under current and future climates. Variants associated with temperature and precipitation variables were detected, and we applied a nonlinear multivariate association method, gradient forest, to project these gene-environment relationships across space. The model allowed the identification of geographic areas within the western Mediterranean region most sensitive to climate change: south-western Iberia and northern Morocco. Our findings provide a preliminary assessment towards a potential management strategy for the conservation of cork oak in the Mediterranean Basin.


Asunto(s)
Adaptación Biológica , Cambio Climático , Quercus , Ecosistema , Interacción Gen-Ambiente , Región Mediterránea , Modelos Estadísticos , Polimorfismo de Nucleótido Simple
5.
Environ Microbiol ; 22(7): 2625-2638, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32114707

RESUMEN

Xylella fastidiosa subsp. fastidiosa causes Pierce's disease of grapevine (PD) and has been present in California for over a century. A singly introduced genotype spread across the state causing large outbreaks and damaging the grapevine industry. This study presents 122 X. fastidiosa subsp. fastidiosa genomes from symptomatic grapevines, and explores pathogen genetic diversity associated with PD in California. A total of 5218 single-nucleotide polymorphisms (SNPs) were found in the dataset. Strong population genetic structure was found; isolates split into five genetic clusters divided into two lineages. The core/soft-core genome constituted 41.2% of the total genome, emphasizing the high genetic variability of X. fastidiosa genomes. An ecological niche model was performed to estimate the environmental niche of the pathogen within California and to identify key climatic factors involved in dispersal. A landscape genomic approach was undertaken aiming to link local adaptation to climatic factors. A total of 18 non-synonymous polymorphisms found to be under selective pressures were correlated with at least one environmental variable highlighting the role of temperature, precipitation and elevation on X. fastidiosa adaptation to grapevines in California. Finally, the contribution to virulence of three of the genes under positive selective pressure and of one recombinant gene was studied by reverse genetics.


Asunto(s)
Genoma Bacteriano/genética , Enfermedades de las Plantas/microbiología , Vitis/microbiología , Xylella/genética , Xylella/patogenicidad , California , Genotipo , Familia de Multigenes/genética , Polimorfismo Genético , Polimorfismo de Nucleótido Simple/genética , Virulencia/genética
6.
mBio ; 10(6)2019 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-31719178

RESUMEN

We discovered a new lineage of the globally important fungal pathogen Cryptococcus gattii on the basis of analysis of six isolates collected from three locations spanning the Central Miombo Woodlands of Zambia, Africa. All isolates were from environments (middens and tree holes) that are associated with a small mammal, the African hyrax. Phylogenetic and population genetic analyses confirmed that these isolates form a distinct, deeply divergent lineage, which we name VGV. VGV comprises two subclades (A and B) that are capable of causing mild lung infection with negligible neurotropism in mice. Comparing the VGV genome to previously identified lineages of C. gattii revealed a unique suite of genes together with gene loss and inversion events. However, standard URA5 restriction fragment length polymorphism (RFLP) analysis could not distinguish between VGV and VGIV isolates. We therefore developed a new URA5 RFLP method that can reliably identify the newly described lineage. Our work highlights how sampling understudied ecological regions alongside genomic and functional characterization can broaden our understanding of the evolution and ecology of major global pathogens.IMPORTANCECryptococcus gattii is an environmental pathogen that causes severe systemic infection in immunocompetent individuals more often than in immunocompromised humans. Over the past 2 decades, researchers have shown that C. gattii falls within four genetically distinct major lineages. By combining field work from an understudied ecological region (the Central Miombo Woodlands of Zambia, Africa), genome sequencing and assemblies, phylogenetic and population genetic analyses, and phenotypic characterization (morphology, histopathological, drug-sensitivity, survival experiments), we discovered a hitherto unknown lineage, which we name VGV (variety gattii five). The discovery of a new lineage from an understudied ecological region has far-reaching implications for the study and understanding of fungal pathogens and diseases they cause.


Asunto(s)
Cryptococcus gattii/clasificación , Cryptococcus gattii/genética , Microbiología Ambiental , Bosques , Enfermedades de los Animales/microbiología , Animales , Genoma Fúngico , Genómica/métodos , Fenotipo , Filogenia , Enfermedades de las Plantas/microbiología , Microbiología del Suelo , Zambia/epidemiología
7.
Appl Environ Microbiol ; 85(13)2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31028021

RESUMEN

Xylella fastidiosa is an economically important bacterial plant pathogen. With insights gained from 72 genomes, this study investigated differences among the three main subspecies, which have allopatric origins: X. fastidiosa subsp. fastidiosa, multiplex, and pauca The origin of recombinogenic X. fastidiosa subsp. morus and sandyi was also assessed. The evolutionary rate of the 622 genes of the species core genome was estimated at the scale of an X. fastidiosa subsp. pauca subclade (7.62 × 10-7 substitutions per site per year), which was subsequently used to estimate divergence time for the subspecies and introduction events. The study characterized genes present in the accessory genome of each of the three subspecies and investigated the core genome to detect genes potentially under positive selection. Recombination is recognized to be the major driver of diversity in X. fastidiosa, potentially facilitating shifts to novel plant hosts. The relative effect of recombination in comparison to point mutation was calculated (r/m = 2.259). Evidence of recombination was uncovered in the core genome alignment; X. fastidiosa subsp. fastidiosa in the United States was less prone to recombination, with an average of 3.22 of the 622 core genes identified as recombining regions, whereas a specific clade of X. fastidiosa subsp. multiplex was found to have on average 9.60 recombining genes, 93.2% of which originated from X. fastidiosa subsp. fastidiosa Interestingly, for X. fastidiosa subsp. morus, which was initially thought to be the outcome of genome-wide recombination between X. fastidiosa subsp. fastidiosa and X. fastidiosa subsp. multiplex, intersubspecies homologous recombination levels reached 15.30% in the core genome. Finally, there is evidence of X. fastidiosa subsp. pauca strains from citrus containing genetic elements acquired from strains infecting coffee plants as well as genetic elements from both X. fastidiosa subsp. fastidiosa and X. fastidiosa subsp. multiplex In summary, our data provide new insights into the evolution and epidemiology of this plant pathogen.IMPORTANCEXylella fastidiosa is an important vector-borne plant pathogen. We used a set of 72 genomes that constitutes the largest assembled data set for this bacterial species so far to investigate genetic relationships and the impact of recombination on phylogenetic clades and to compare genome content at the subspecies level, and we used a molecular dating approach to infer the evolutionary rate of X. fastidiosa The results demonstrate that recombination is important in shaping the genomes of X. fastidiosa and that each of the main subspecies is under different selective pressures. We hope insights from this study will improve our understanding of X. fastidiosa evolution and biology.


Asunto(s)
Variación Genética , Genoma Bacteriano , Recombinación Homóloga , Xylella/genética , Filogenia
8.
Annu Rev Phytopathol ; 56: 181-202, 2018 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-29889627

RESUMEN

The bacterium Xylella fastidiosa re-emerged as a plant pathogen of global importance in 2013 when it was first associated with an olive tree disease epidemic in Italy. The current threat to Europe and the Mediterranean basin, as well as other world regions, has increased as multiple X. fastidiosa genotypes have now been detected in Italy, France, and Spain. Although X. fastidiosa has been studied in the Americas for more than a century, there are no therapeutic solutions to suppress disease development in infected plants. Furthermore, because X. fastidiosa is an obligatory plant and insect vector colonizer, the epidemiology and dynamics of each pathosystem are distinct. They depend on the ecological interplay of plant, pathogen, and vector and on how interactions are affected by biotic and abiotic factors, including anthropogenic activities and policy decisions. Our goal with this review is to stimulate discussion and novel research by contextualizing available knowledge on X. fastidiosa and how it may be applicable to emerging diseases.


Asunto(s)
Insectos Vectores/microbiología , Olea/microbiología , Enfermedades de las Plantas/microbiología , Xylella/fisiología , Animales , Interacciones Huésped-Patógeno , Insectos Vectores/fisiología
9.
Genetics ; 207(1): 327-346, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28679543

RESUMEN

Cryptococcus neoformans var. grubii is the causative agent of cryptococcal meningitis, a significant source of mortality in immunocompromised individuals, typically human immunodeficiency virus/AIDS patients from developing countries. Despite the worldwide emergence of this ubiquitous infection, little is known about the global molecular epidemiology of this fungal pathogen. Here we sequence the genomes of 188 diverse isolates and characterize the major subdivisions, their relative diversity, and the level of genetic exchange between them. While most isolates of C. neoformans var. grubii belong to one of three major lineages (VNI, VNII, and VNB), some haploid isolates show hybrid ancestry including some that appear to have recently interbred, based on the detection of large blocks of each ancestry across each chromosome. Many isolates display evidence of aneuploidy, which was detected for all chromosomes. In diploid isolates of C. neoformans var. grubii (serotype AA) and of hybrids with C. neoformans var. neoformans (serotype AD) such aneuploidies have resulted in loss of heterozygosity, where a chromosomal region is represented by the genotype of only one parental isolate. Phylogenetic and population genomic analyses of isolates from Brazil reveal that the previously "African" VNB lineage occurs naturally in the South American environment. This suggests migration of the VNB lineage between Africa and South America prior to its diversification, supported by finding ancestral recombination events between isolates from different lineages and regions. The results provide evidence of substantial population structure, with all lineages showing multi-continental distributions; demonstrating the highly dispersive nature of this pathogen.


Asunto(s)
Cryptococcus neoformans/genética , Evolución Molecular , Genoma Fúngico , Recombinación Genética , Aneuploidia , Cromosomas Fúngicos/genética , Cryptococcus neoformans/clasificación , Cryptococcus neoformans/aislamiento & purificación , Pérdida de Heterocigocidad , Filogenia , Filogeografía
10.
G3 (Bethesda) ; 7(4): 1165-1176, 2017 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-28188180

RESUMEN

Recurrence of meningitis due to Cryptococcus neoformans after treatment causes substantial mortality in HIV/AIDS patients across sub-Saharan Africa. In order to determine whether recurrence occurred due to relapse of the original infecting isolate or reinfection with a different isolate weeks or months after initial treatment, we used whole-genome sequencing (WGS) to assess the genetic basis of infection in 17 HIV-infected individuals with recurrent cryptococcal meningitis (CM). Comparisons revealed a clonal relationship for 15 pairs of isolates recovered before and after recurrence showing relapse of the original infection. The two remaining pairs showed high levels of genetic heterogeneity; in one pair we found this to be a result of infection by mixed genotypes, while the second was a result of nonsense mutations in the gene encoding the DNA mismatch repair proteins MSH2, MSH5, and RAD5 These nonsense mutations led to a hypermutator state, leading to dramatically elevated rates of synonymous and nonsynonymous substitutions. Hypermutator phenotypes owing to nonsense mutations in these genes have not previously been reported in C. neoformans, and represent a novel pathway for rapid within-host adaptation and evolution of resistance to first-line antifungal drugs.


Asunto(s)
Evolución Biológica , Cryptococcus neoformans/fisiología , Genética de Población , Genómica , Interacciones Huésped-Patógeno/genética , Meningitis Criptocócica/genética , Adulto , Aneuploidia , Cromosomas Fúngicos/genética , Codón sin Sentido/genética , Cryptococcus neoformans/aislamiento & purificación , Variaciones en el Número de Copia de ADN/genética , Reparación de la Incompatibilidad de ADN/genética , Demografía , Femenino , Variación Genética , Humanos , Masculino , Meningitis Criptocócica/microbiología , Pruebas de Sensibilidad Microbiana , Filogenia , Polimorfismo de Nucleótido Simple/genética , Recurrencia , Análisis de Secuencia de ADN
11.
Mol Ecol ; 26(7): 1991-2005, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27862555

RESUMEN

Emerging infections caused by fungi have become a widely recognized global phenomenon and are causing an increasing burden of disease. Genomic techniques are providing new insights into the structure of fungal populations, revealing hitherto undescribed fine-scale adaptations to environments and hosts that govern their emergence as infections. Cryptococcal meningitis is a neglected tropical disease that is responsible for a large proportion of AIDS-related deaths across Africa; however, the ecological determinants that underlie a patient's risk of infection remain largely unexplored. Here, we use genome sequencing and ecological genomics to decipher the evolutionary ecology of the aetiological agents of cryptococcal meningitis, Cryptococcus neoformans and Cryptococcus gattii, across the central African country of Zambia. We show that the occurrence of these two pathogens is differentially associated with biotic (macroecological) and abiotic (physical) factors across two key African ecoregions, Central Miombo woodlands and Zambezi Mopane woodlands. We show that speciation of Cryptococcus has resulted in adaptation to occupy different ecological niches, with C. neoformans found to occupy Zambezi Mopane woodlands and C. gattii primarily recovered from Central Miombo woodlands. Genome sequencing shows that C. neoformans causes 95% of human infections in this region, of which over three-quarters belonged to the globalized lineage VNI. We show that VNI infections are largely associated with urbanized populations in Zambia. Conversely, the majority of C. neoformans isolates recovered in the environment belong to the genetically diverse African-endemic lineage VNB, and we show hitherto unmapped levels of genomic diversity within this lineage. Our results reveal the complex evolutionary ecology that underpins the reservoirs of infection for this, and likely other, deadly pathogenic fungi.


Asunto(s)
Adaptación Fisiológica/genética , Cryptococcus gattii/genética , Cryptococcus neoformans/genética , Bosques , Meningitis Criptocócica/microbiología , Código de Barras del ADN Taxonómico , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Genética de Población , Genoma Fúngico , Genómica , Humanos , Meningitis Criptocócica/epidemiología , Modelos Biológicos , Filogenia , Corteza de la Planta/microbiología , Polimorfismo de Nucleótido Simple , Microbiología del Suelo , Árboles/microbiología , Zambia
12.
Mol Ecol ; 24(10): 2406-22, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25847086

RESUMEN

An improved understanding of how a parasite species exploits its genetic repertoire to colonize novel hosts and environmental niches is crucial to establish the epidemiological risk associated with emergent pathogenic genotypes. Trypanosoma cruzi, a genetically heterogeneous, multi-host zoonosis, provides an ideal system to examine the sylvatic diversification of parasitic protozoa. In Bolivia, T. cruzi I, the oldest and most widespread genetic lineage, is pervasive across a range of ecological clines. High-resolution nuclear (26 loci) and mitochondrial (10 loci) genotyping of 199 contemporaneous sylvatic TcI clones was undertaken to provide insights into the biogeographical basis of T. cruzi evolution. Three distinct sylvatic parasite transmission cycles were identified: one highland population among terrestrial rodent and triatomine species, composed of genetically homogenous strains (Ar = 2.95; PA/L = 0.61; DAS = 0.151), and two highly diverse, parasite assemblages circulating among predominantly arboreal mammals and vectors in the lowlands (Ar = 3.40 and 3.93; PA/L = 1.12 and 0.60; DAS = 0.425 and 0.311, respectively). Very limited gene flow between neighbouring terrestrial highland and arboreal lowland areas (distance ~220 km; FST = 0.42 and 0.35) but strong connectivity between ecologically similar but geographically disparate terrestrial highland ecotopes (distance >465 km; FST = 0.016-0.084) strongly supports ecological host fitting as the predominant mechanism of parasite diversification. Dissimilar heterozygosity estimates (excess in highlands, deficit in lowlands) and mitochondrial introgression among lowland strains may indicate fundamental differences in mating strategies between populations. Finally, accelerated parasite dissemination between densely populated, highland areas, compared to uninhabited lowland foci, likely reflects passive, long-range anthroponotic dispersal. The impact of humans on the risk of epizootic Chagas disease transmission in Bolivia is discussed.


Asunto(s)
Genética de Población , Hibridación Genética , Trypanosoma cruzi/genética , Animales , Bolivia , Enfermedad de Chagas/parasitología , ADN Mitocondrial/genética , ADN Protozoario/genética , Flujo Génico , Variación Genética , Genotipo , Geografía , Humanos , Repeticiones de Microsatélite , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...