Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(18): 19859-19878, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38737031

RESUMEN

Unprecedented MsOH-promoted diastereoselective cascade dimerization and intramolecular lactonization of readily accessible α,ß-unsaturated γ-ketoesters are presented. The results obtained in this work, control experiments, and density functional theory (DFT) calculations suggested that the initial enolization and E to Z isomerization/equilibration of olefin (C=C) of substrate α,ß-unsaturated γ-ketoesters give a Z-isomer preferentially over an E-isomer. Subsequently, the Z-isomer undergoes intermolecular annulation with α,ß-unsaturated γ-ketoesters via domino Michael addition/ketalization/lactonization steps to furnish fused tetracyclic pyrano-ketal-lactone. However, the Z-isomer prefers intramolecular trans-esterification in a competing pathway and gives bicyclic γ-ylidene-butenolide. The key features of this work include simple Brønsted acid catalysis, the formation of three bonds, two rings, and three contiguous stereogenic centers in a single step, DFT calculations, and the assignment of relative stereochemistry through X-ray diffraction (XRD) and two-dimensional (2D) nuclear magnetic resonance (NMR) analyses.

2.
ACS Omega ; 9(14): 16429-16442, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38617628

RESUMEN

Indoline (In) and aniline (An) donor-based visible light active unsymmetrical squaraine (SQ) dyes were synthesized for dye-sensitized solar cells (DSSCs), where the position of An and In units was changed with respect to the anchoring group (carboxylic acid) to have In-SQ-An-CO2H and An-SQ-In-CO2H sensitizers, AS1-AS5. Linear or branched alkyl groups were functionalized with the N atom of either In or An units to control the aggregation of the dyes on TiO2. AS1-AS5 exhibit an isomeric π-framework where the squaric acid unit is placed in the middle, where AS2 and AS5 dyes possess the anchoring group connected with the An donor, and AS1, AS3, and AS4 dyes having the anchoring group connected with the In donor. Hence, the conjugation between the middle squaric acid acceptor unit and the anchoring -CO2H group is short for AS2, AS5, and AK2 and longer for AS1, AS3, and AS4 dyes. AS dyes showed absorption between 501 and 535 nm with extinction coefficients of 1.46-1.61 × 105 M-1 cm-1. Further, the isomeric π-framework of An-SQ-In-CO2H and In-SQ-An-CO2H exhibited by means of changing the position of In and An units a bathochromic shift in the absorption properties of AS2 and AS5 compared to the AS1, AS3, and AS4 dyes. The DSSC device fabricated with the dyes contains short acceptor-anchoring group distance (AS2 and AS5) showed high photovoltaic performances compared to the dyes having longer distance (AS1, AS3, and AS4) with the iodolyte (I-/I3-) electrolyte. DSSC device efficiencies of 5.49, 6.34, 6.16, and 5.57% have been achieved for AS1, AS2, AS3, and AS4 dyes, respectively; without chenodeoxycholic acid (CDCA), small changes have been observed in the device performance of the AS dyes with CDCA. Significant changes have been noted in the DSSC parameters (open-circuit voltage VOC, short-circuit current JSC, fill factor ff, and efficiency η) for the AS5 dye while sensitized with CDCA and showed highest DSSC efficiency of 8.01% in the AS dye series. This study revealed the potential of shorter SQ acceptor-anchoring group distance over the longer one and the importance of alkyl groups on the overall DSSC device performance for the unsymmetrical squaraine dyes.

3.
Inorg Chem ; 63(9): 4099-4107, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38373012

RESUMEN

In pursuit of enhancing the stability of the highly explosive and shock-sensitive compound XeO3, we performed quantum chemical calculations to investigate its possible complexation with electron-rich crown ethers, including 9-crown-3, 12-crown-4, 15-crown-5, 18-crown-6, and 21-crown-7, as well as their thio analogues. Furthermore, we expanded our study to other noble gas trioxides (NgO3), namely, KrO3 and ArO3. The basis set superposition error (BSSE) corrected interaction energies for these adducts range from -13.0 kcal/mol to -48.2 kcal/mol, which is notably high for σ-hole-mediated noncovalent interactions. The formation of these adducts was observed to be more favorable with the increase in the ring size of the crowns and less favorable while going from XeO3 to ArO3. A comprehensive analysis by various computational tools such as the mapping of the electrostatic potential (ESP), Wiberg bond indices (WBIs), Bader's theory of atoms-in-molecules (AIM), natural bond orbital (NBO) analysis, noncovalent interaction (NCI) plots, and energy decomposition analysis (EDA) revealed that the C-H···O interactions, as well as dispersion interactions, play a pivotal role in stabilizing adducts involving larger crowns. A noteworthy outcome of our study is the revelation of a coordination number of 9 for xenon in the complex formed between XeO3 and the thio analogue of 18-crown-6, which is higher than the largest number reported to date.

4.
Photochem Photobiol ; 2024 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-38282075

RESUMEN

Squaraine dyes possess sharp far-red active transition with high extinction coefficient and form aggregates on TiO2 surface. Aggregation of dyes on TiO2 has been considered as a detrimental factor for DSSC device performance, which can be controlled by appending alkyl groups to the dye structures. Hence by integrating alkylated (alkyl groups with both in-plane and out-of-plane) aryl group with indoline moiety to make it compatible with other electrolytes and for controlling the dye-aggregation, a series of squaraine acceptor-based dyes SQA4-6 have been designed and synthesized. SQA4-6 dyes showed absorption between 642 and 653 nm (λmax ), photophysical and electrochemical studies indicated that the HOMO energy levels of this sets of dyes are well aligned with the potentials of I- / I 3 - $$ {\mathrm{I}}_3^{-} $$ and [Co(bpy)3 ]2+/3+ redox shuttles for better dye regeneration process. DSSC device efficiency of 3% has been achieved for SQA5 dye with iodolyte (I- / I 3 - $$ {\mathrm{I}}_3^{-} $$ ) electrolyte in the presence of 0.3 mM of chenodeoxycholic acid (CDCA). The IPCE profile of DSSC device fabricated with SQA4-6 dyes indicated the contribution of aggregated structures for the photocurrent generation.

5.
Org Biomol Chem ; 22(5): 1038-1046, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38197499

RESUMEN

This paper describes a simple and practical protocol for the direct synthesis of acyclic and cyclic quinone derivatives via an acid-promoted nickel(II)-catalyzed inner rim C-H oxidation of cyclotriveratrylene (CTV) and its analogues. The cyclic quinone derivatives resulted from trimethoxy-cyclotriveratrylene (TCTV) through C-C bond formation via intramolecular ipso substitution followed by subsequent anionic rearrangement containing stereo-vicinal quaternary centers. The DFT calculations strongly support the experimental findings and reveal the role of Brønsted acids in the C-H bond activation of CTV. All the newly synthesized compounds were screened for their in vitro anti-cancer activity using colorimetric SRB assay analysis. Among them, compounds 3a, 3d, 3h, 4a, 4b, 4c and 4e exhibited moderate anticancer activity against A549, HCT-116, PC-3, MDA-MB-231, HEK-293 and SW620 human cancer cell lines.


Asunto(s)
Antineoplásicos , Compuestos Policíclicos , Humanos , Quinonas/farmacología , Células HEK293 , Antineoplásicos/química , Catálisis
6.
Chemphyschem ; 25(6): e202300908, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38240413

RESUMEN

In order to control the explosiveness and shock sensitivity of XeO3 , we have investigated its plausible interaction with various non-aromatic coordinating solvents, serving as potential Lewis base donors, through density functional theory (DFT) calculations. Out of twenty six such solvents, the top ten were thus identified and then thoroughly examined by employing various computational tools such as the mapping of the electrostatic potential surface (MESP), Wiberg bond indices (WBIs), non-covalent interaction (NCI) plots, Bader's theory of atoms-in-molecules (AIM), natural bond orbital (NBO) analysis, and the energy decomposition analysis (EDA). The amphoteric nature of XeO3 was also explored by investigating the extent of back donation from the lone pair of Xe to the antibonding orbital of the donating atom/group of the solvent molecules. The C-H…O interactions were also found to be a contributing factor in the stabilization of these adducts. Although these aerogen-bonding interactions were found to be predominantly electrostatic, significant contributions from the orbital contributions, as well as dispersion interactions, were observed. The top three non-aromatic solvents (among the twenty six studied) which form the strongest adducts with XeO3 are proposed to be hexamethylphosphoramide (HMPA), N,N'-dimethylpropyleneurea (DMPU) and tetramethylethylenediamine (TMEDA).

7.
Chem Asian J ; 19(4): e202300997, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38270228

RESUMEN

The presence of an aromatic additive has been seen to enhance, often significantly, the enantioselectivity and yield in asymmetric organocatalysis. Considering their success across a dizzying range of organocatalysts and organic transformations, it would seem unlikely that a common principle exists for their functioning. However, the current investigations with DFT suggest a general principle: the phenolic additive sandwiches itself, through hydrogen bonding and π⋅⋅⋅π stacking, between the organocatalyst coordinated electrophile and nucleophile. This is seen for a wide range of experimentally reported systems. That such complex formation leads to enhanced stereoselectivity is then demonstrated for two cases: the cinchona alkaloid complex (BzCPD), catalysing thiocyanation (2-naphthol additive employed), as well as for L-pipecolicacid catalysing the asymmetric nitroaldol reaction with a range of nitro-substituted phenol additives. These findings, indicating that dual catalysis takes place when phenolic additives are employed, are likely to have a significant impact on the field of asymmetric organocatalysis.

8.
Chemistry ; 30(4): e202303478, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-37897110

RESUMEN

In the last decade, magnesium complexes have emerged as a viable alternative to transition-metal catalysts for the hydrofunctionalization of unsaturated bonds. However, their potential for advanced catalytic reactions has not been thoroughly investigated. To address this gap, we have developed a novel magnesium amide compound (3) using a PNP framework that is both bulky and flexible. Our research demonstrates that compound 3 can effectively catalyze the synthesis of biologically significant oxazolidinone derivatives. This synthesis involves a tandem reaction of hydroalkoxylation and cyclohydroamination of isocyanate using propargyl alcohol. Furthermore, we conducted comprehensive theoretical calculations to gain insights into the reaction mechanism. It is important to note that these types of transformations have not been reported for magnesium and would significantly enhance the catalytic portfolio of the 7th most abundant element.

9.
Chemistry ; 30(12): e202303957, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38051591

RESUMEN

The reaction of a nickel(II) chloride complex containing a tridentate ß-diketiminato ligand with a picolyl group [2,6-iPr2 -C6 H3 NC(Me)CHC(Me)NH(CH2 py)]Ni(II)Cl (1)] with KSi(SiMe3 )3 conveniently afforded a nickel(I) radical with a T-shaped geometry (2). The compound's metalloradical nature was confirmed through electron paramagnetic resonance (EPR) studies and its reaction with TEMPO, resulting in the formation of a highly unusual three-membered nickeloxaziridine complex (3). When reacted with disulfide and diselenide, the S-S and Se-Se bonds were cleaved, and a coupled product was formed through carbon atom of the pyridine-imine group. The nickel(I) radical activates dihydrogen at room temperature and atmospheric pressure to give the monomeric nickel hydride.

10.
Dalton Trans ; 52(39): 13858-13863, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37743752

RESUMEN

Treatment of trans-[Ir(H)(N)2(iPr)4(POCOP)(DMAP)][BAr4f] (2) with H2 (1 bar) under ambient conditions (298 K) results in the formation of a trans-[Ir(H)(η2-H2)(iPr)4(POCOP)(DMAP)][BAr4f] (3) complex. Complex 3 exhibits H-atom site exchange between the bound H2 and the hydride ligands which are mutually trans to one another. A plausible mechanism of this exchange involves metal-ligand cooperativity as studied by computations.

11.
Chempluschem ; 88(8): e202300273, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37409641

RESUMEN

In this work, 5-SIDipp [SIDipp=1,3-bis(2,6-diisopropylphenyl)-imidazolin-2-ylidene] (1) derived Chichibabin's hydrocarbon with an octafluorobiphenylene spacer (3) has been reported. The addition of two equivalents of 5-SIDipp with decafluorobiphenyl in presence of BF3 gives the double C-F bond activated imidazolium salt with two tetrafluoroborate anions, 2. Further reduction of 2 gives the fluorine substituted 5-SIDipp based Chichibabin's hydrocarbon, 3. Quantum chemical calculations suggested a singlet state of 3 with a singlet-triplet energy gap (ΔES-T ) of 3.7 kcal mol-1 , which is substantially lower with respect to the hydrogen substituted NHC-based Chichibabin's hydrocarbons (10.7 kcal mol-1 , B3LYP). As a result, the diradical character (y) of 3 (y=0.62) is also noticeably higher than the hydrogen substituted CHs (y=0.41-0.43). The ▵ES-T was found to be higher in CASSCF (22.24 kcal mol-1 ) and CASPT2 (11.17 kcal mol-1 ) for 3 and the diradical character (d) is 44.6 %.

12.
Chem Sci ; 14(22): 5894-5898, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37293651

RESUMEN

Despite recent advancements in the chemistry of multiply bound boron compounds, the laboratory isolation of the parent oxoborane moiety, HBO has long remained an unsolved and well-recognized challenge. The reaction of 6-SIDipp·BH3 [6-SIDipp = 1,3-di(2,6-diisopropylphenyl)tetrahydropyrimidine-2-ylidene] with GaCl3 afforded an unusual boron-gallium 3c-2e compound (1). The addition of water to 1 resulted in the release of H2 and the formation of a rare acid stabilized neutral parent oxoborane, LB(H)[double bond, length as m-dash]O (2). Crystallographic and density functional theory (DFT) analyses support the presence of a terminal B[double bond, length as m-dash]O double bond. Subsequent addition of another equivalent of water molecule led to hydrolysis of the B-H bond to the B-OH bond, but the 'B[double bond, length as m-dash]O' moiety remained intact, resulting in the formation of the hydroxy oxoborane compound (3), which can be classified as a monomeric form of metaboric acid.

13.
Chem Commun (Camb) ; 59(55): 8540-8543, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37340821

RESUMEN

The combination of 6-SIDipp·AlH3 (1) and 5-IDipp resulted in the ring expansion of 6-NHC, while the five-membered NHC remained unchanged, which was subsequently explained by DFT studies. Besides, the substitution chemistry of 1 was also studied with TMSOTf and I2, which gave rise to the substitution of a hydride by triflate or iodide ligands.

14.
Chem Asian J ; 18(14): e202300321, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37243435

RESUMEN

The great success of asymmetric organocatalysis has made it one of the most important advancements made in chemistry in the past two decades. A significant achievement in this context is the asymmetric organocatalysis of the thiocyanation reaction. In the current study, computational studies with density functional theory have been done in order to understand an interesting experimental finding: the reversal of enantioselectivity from R to S when the electrophile is changed from ß-keto ester to oxindole for the thiocyanation reaction with the cinchona alkaloid complex catalyst. The calculations reveal an unusual fact - the principal reason for the reversal is the presence of the C-H⋅⋅⋅S noncovalent interaction, which is present only in the major transition states in each of the two nucleophile cases. Only recently has it been realized that the supposedly weak C-H⋅⋅⋅S noncovalent interaction has the properties of a hydrogen bond, and the fact that this interaction is the cause of enantioselectivity has relevance, because of the large number of asymmetric transformations involving the sulphur heteroatom.

15.
Chem Commun (Camb) ; 59(16): 2255-2258, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36748261

RESUMEN

This work describes a transition metal-free methodology involving an efficient and controlled reduction of isocyanates to only formamide derivatives using pinacolborane (HBpin) as the hydrogenating agent and a bis(phosphino)carbazole ligand stabilized magnesium methyl complex (1) as the catalyst. A large number of substrates undergo selective hydroboration and give exclusively N-boryl formamides.

16.
Chem Commun (Camb) ; 59(12): 1669-1672, 2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36689219

RESUMEN

The reaction of PhC(NtBu)2SiSi(SiMe3)3 (1) with Me3SiCH2Cl afforded an unsymmetrical sp2-sp3 disilene, 2, with concomitant elimination of Me3SiCl. The analogous reaction with PhC(NtBu)2SiCl resulted in the oxidative addition of the C-Cl bond at the Si(II) atom (3). The reactions of 2 with sulfur and selenium led to compounds with SiE (ES (4) and Se (5)) double bonds. Tellurium reacted differently with 2 and furnished a zwitterionic compound, 6.

17.
Chem Sci ; 13(46): 13764-13773, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36544725

RESUMEN

Chemoselective hydrogenation of C[double bond, length as m-dash]C, C[double bond, length as m-dash]O and C[double bond, length as m-dash]N bonds in α,ß-unsaturated ketones, aldehydes and imines is accomplished at room temperature (27 °C) using a well-defined Mn(i) catalyst and 5.0 bar H2. Amongst the three mixed-donor Mn(i) complexes developed, κ3-(R2PN3NPyz)Mn(CO)2Br (R = Ph, iPr, t Bu); the t Bu-substituted complex ( tBu2PN3NPyz)Mn(CO)2Br shows exceptional chemoselective catalytic reduction of unsaturated bonds. This hydrogenation protocol tolerates a range of highly susceptible functionalities, such as halides (-F, -Cl, -Br, and -I), alkoxy and hydroxy, including hydrogen-sensitive moieties like acetyl, nitrile, nitro, epoxide, and unconjugated alkenyl and alkynyl groups. Additionally, the disclosed method applies to indole, pyrrole, furan, thiophene, and pyridine-containing unsaturated ketones leading to the corresponding saturated ketones. The C[double bond, length as m-dash]C bond is chemoselectively hydrogenated in α,ß-unsaturated ketones, while the aldehyde's C[double bond, length as m-dash]O bond and imine's C[double bond, length as m-dash]N bond are preferentially reduced over the C[double bond, length as m-dash]C bond. A detailed mechanistic study highlighted the non-innocent behavior of the ligand in the ( tBu2PN3NPyz)Mn(i) complex and indicated a metal-ligand cooperative catalytic pathway. The molecular hydrogen (H2) acts as a hydride source, whereas MeOH provides a proton for hydrogenation. DFT energy calculations supported the facile progress of most catalytic steps, involving a crucial turnover-limiting H2 activation.

18.
Inorg Chem ; 61(43): 17370-17377, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36264667

RESUMEN

The transmetalation reaction of picolyl-supported tridentate nacnac germylene monochloride [2,6-iPr2-C6H3NC(Me)CHC(Me)NH(CH2py)]GeCl (1) (py = pyridine) with SnCl2 results in an analogous stannylene chloride (2). The three-coordinated stannylenium cation [{2,6-iPr2-C6H3NC(Me)CHC(Me)NH(CH2py)}Sn]+ with SnCl3- as a counteranion (3) has been generated through the abstraction of chloride ligand from 2 using an additional equivalent of SnCl2. Instead of forming a donor-acceptor complex, 2 undergoes a facile redox transmetalation reaction with Ni(COD)2 (COD = cyclooctadiene) and CuCl to afford analogous nickel and copper complexes [2,6-iPr2-C6H3NC(Me)CHC(Me)NH(CH2py)]MCl [M = Ni (4) and Cu (5)]. The reactions of 4 with potassium tri-sec-butylborohydride (commonly known as K-selectride) and AgSbF6 provide access to monomeric Ni(II) hydride, [2,6-iPr2-C6H3NC(Me)CHC(Me)NH(CH2py)]NiH (6) and a Ni(II) cation, [{2,6-iPr2-C6H3NC(Me)CHC(Me)NH(CH2py)}Ni][SbF6] (7), respectively. 6 was found to be an effective catalyst for the hydroboration of amides.

19.
Chem Commun (Camb) ; 58(84): 11843-11846, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-36193808

RESUMEN

Herein, we report two 2,2'-pyridylpyrrolide (PyPyrH) ligand supported magnesium complexes (1 and 2), which demonstrate bright luminescence with a quantum yield of 22% and 14% in the solid state, respectively. Theoretical calculations reveal that their emissive properties originate from the intra- and inter-ligand charge transfer.


Asunto(s)
Luminiscencia , Magnesio , Ligandos , Estructura Molecular
20.
J Org Chem ; 87(21): 13583-13597, 2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36181673

RESUMEN

Highly chemo- and regio-selective C-H bond functionalization of unactivated arenes with propargyl α-aryl-α-diazoacetates has been developed using scandium catalysis. A variety of unactivated, mildly deactivated, and electronically activated arenes have been functionalized using this protocol. The synergistic combination of scandium triflate as a catalyst and propargyl α-aryl-α-diazoacetate as a reagent played a pivotal role in the effective C-H bond functionalization of arenes without the assistance of any directing group or ligand. The practicality of the protocol has been demonstrated by the gram-scale synthesis of very useful α,α-diarylacetates including antispasmodic drug-adiphenine. Based on the experimental observations, labeling experiment, and density functional theory calculations, a plausible reaction mechanism has been outlined.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...