Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 15: 1365151, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38689663

RESUMEN

Preparations of black cohosh extract are sold as dietary supplements marketed to relieve the vasomotor symptoms of menopause, and some studies suggest it may protect against postmenopausal bone loss. Postmenopausal women are also frequently prescribed bisphosphonates, such as risedronate, to prevent osteoporotic bone loss. However, the pharmacodynamic interactions between these compounds when taken together is not known. To investigate possible interactions, 6-month-old, female Sprague-Dawley rats underwent bilateral ovariectomy or sham surgery and were treated for 24 weeks with either vehicle, ethinyl estradiol, risedronate, black cohosh extract or coadministration of risedronate and black cohosh extract, at low or high doses. Bone mineral density (BMD) of the femur, tibia, and lumbar vertebrae was then measured by dual-energy X-ray absorptiometry (DEXA) at weeks 0, 8, 16, and 24. A high dose of risedronate significantly increased BMD of the femur and vertebrae, while black cohosh extract had no significant effect on BMD individually and minimal effects upon coadministration with risedronate. Under these experimental conditions, black cohosh extract alone had no effect on BMD, nor did it negatively impact the BMD-enhancing properties of risedronate.

2.
Food Chem Toxicol ; 183: 114333, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38061571

RESUMEN

The 6:2 fluorotelomer alcohol (6:2 FTOH) is a common impurity in per- and polyfluoroalkyl substances (PFASs) used in many applications. Our previous toxicokinetic (TK) evaluation of 6:2 FTOH calculated times to steady state (tss) of one of its metabolites, 5:3 fluorotelomer carboxylic acid (5:3A), in the plasma and tissues of up to a year after oral exposure to rats. Our current work further elucidated the TK of 5:3A and other metabolites of 6:2 FTOH in pregnant and nonpregnant rats after repeated oral exposure and examined the role of renal transporters in the biopersistence of 5:3A. The tss values for 5:3A in serum and tissues of adult nonpregnant animals ranged from 150 days to over a year. 4:3 fluorotelomer carboxylic acid (4:3A) was an additional potentially-biopersistent metabolite. 5:3A was the major metabolite of 6:2 FTOH in serum of pregnant dams and fetuses at each time interval. 5:3A was not a substrate for renal transporters in a human kidney cell line in vitro, indicating that renal reuptake of 5:3A is unlikely contribute to its biopersistence. Further research is needed to identify the underlying processes and evaluate the impact of these 6:2 FTOH metabolites on human health.


Asunto(s)
Fluorocarburos , Ratas , Humanos , Animales , Embarazo , Femenino , Toxicocinética , Fluorocarburos/toxicidad , Fluorocarburos/química , Transporte Biológico , Ácidos Carboxílicos
3.
Arch Toxicol ; 98(1): 335-345, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37874342

RESUMEN

Triclosan is a widely used antimicrobial agent in personal care products, household items, medical devices, and clinical settings. Due to its extensive use, there is potential for humans in all age groups to receive lifetime exposures to triclosan, yet data on the chronic dermal toxicity/carcinogenicity of triclosan are still lacking. We evaluated the toxicity/carcinogenicity of triclosan administered dermally to B6C3F1 mice for 104 weeks. Groups of 48 male and 48 female B6C3F1 mice received dermal applications of 0, 1.25, 2.7, 5.8, or 12.5 mg triclosan/kg body weight (bw)/day in 95% ethanol, 7 days/week for 104 weeks. Vehicle control animals received 95% ethanol only; untreated, naïve control mice did not receive any treatment. There were no significant differences in survival among the groups. The highest dose of triclosan significantly decreased the body weight of mice in both sexes, but the decrease was ≤ 9%. Minimal-to-mild epidermal hyperplasia, suppurative inflammation (males only), and ulceration (males only) were observed at the application site in the treated groups, with the highest incidence occurring in the 12.5 mg triclosan/kg bw/day group. No tumors were identified at the application site. Female mice had a positive trend in the incidence of pancreatic islet adenoma. In male mice, there were positive trends in the incidences of hepatocellular carcinoma and hepatocellular adenoma or carcinoma (combined), with the increase of carcinoma being significant in the 5.8 and 12.5 mg/kg/day groups and the increase in hepatocellular adenoma or carcinoma (combined) being significant in the 2.7, 5.8, and 12.5 mg/kg/day groups.


Asunto(s)
Adenoma de Células Hepáticas , Carcinoma Hepatocelular , Neoplasias Hepáticas , Triclosán , Ratas , Humanos , Ratones , Masculino , Femenino , Animales , Triclosán/toxicidad , Ratas Endogámicas F344 , Pruebas de Carcinogenicidad , Ratones Endogámicos , Etanol , Peso Corporal
4.
Int J Mol Sci ; 24(7)2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37047323

RESUMEN

First-pass metabolism alters arsenic biotransformation and its immunomodulatory activities. This study aims to determine the mRNA expression of intestinal-immunity- and permeability-associated genes, levels of cytokine/chemokines and levels of immunoglobulin isotypes when CD-1 mice were exposed to a single dose of intravenous (IV) sodium arsenite (50 µg/kg body weight (BW)) and to compare these responses to exposure via oral gavage (OG) (50 µg/kg BW). Samples were collected at 1, 4, 24 and 48 h post IV exposure and 24 and 48 h post OG. Sodium arsenite IV exposure led to a transient modulation of mRNA expression and protein levels of immunity-related genes involved in inflammation/apoptotic pathways and production of cytokines/chemokines, whereas it also led to downregulated expression of genes encoding tight junction, focal adhesion, and gap junction proteins, which are responsible for maintaining cell permeability. Oral exposure perturbed fewer cell-permeability-related genes at 24 and 48 h post exposure. At 24 h post exposure, OG decreased IgA and IgG2b levels; however, IV exposure significantly increased IgG2b, IgG3 and IgA in ileal tissue. Earlier, we showed significant downregulation of mRNA expression of genes involved in the immune-related pathways during OG in the intestinal mucosa of the same animals. Cumulatively, these results provide evidence that the exposure route of a xenobiotic can differentially impact the intestinal responses due to the impact of first-pass metabolism.


Asunto(s)
Arsénico , Ratones , Animales , Arsénico/toxicidad , Arsénico/metabolismo , Mucosa Intestinal/metabolismo , Citocinas/genética , Citocinas/metabolismo , Permeabilidad , Inmunoglobulina A/metabolismo , Inmunidad , ARN Mensajero/metabolismo
5.
Toxicol Lett ; 359: 22-30, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35092809

RESUMEN

Polyethylene glycol (PEG) is present in a variety of products. Little is known regarding the accumulation of high-molecular-weight PEGs or the long-term effects resulting from PEG accumulation in certain tissues, especially the choroid plexus. We evaluated the toxicity of high-molecular-weight PEGs administered to Sprague Dawley rats. Groups of 12 rats per sex were administered subcutaneous injections of 20, 40, or 60 kDa PEG or intravenous injections of 60 kDa PEG at 100 mg PEG/kg body weight/injection once a week for 24 weeks. A significant decrease in triglycerides occurred in the 60 kDa PEG groups. PEG treatment led to a molecular-weight-related increase in PEG in plasma and a low level of PEG in cerebrospinal fluid. PEG was excreted in urine and feces, with a molecular-weight-related decrease in the urinary excretion. A higher prevalence of anti-PEG IgM was observed in PEG groups; anti-PEG IgG was not detected. PEG treatment produced a molecular-weight-related increase in vacuolation in the spleen, lymph nodes, lungs, and ovaries/testes, without an inflammatory response. Mast cell infiltration at the application site was noted in all PEG-treated groups. These data indicate that subcutaneous and intravenous exposure to high-molecular-weight PEGs produces anti-PEG IgM antibody responses and tissue vacuolation without inflammation.


Asunto(s)
Anticuerpos/sangre , Formación de Anticuerpos/efectos de los fármacos , Plexo Coroideo/efectos de los fármacos , Polietilenglicoles/toxicidad , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Inyecciones Intravenosas , Inyecciones Subcutáneas , Masculino , Peso Molecular , Ratas , Ratas Sprague-Dawley
6.
Front Cell Infect Microbiol ; 12: 1051272, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36710966

RESUMEN

Introduction: There are concerns about microorganisms present on cannabis materials used in clinical settings by individuals whose health status is already compromised and are likely more susceptible to opportunistic infections from microbial populations present on the materials. Most concerning is administration by inhalation where cannabis plant material is heated in a vaporizer, aerosolized, and inhaled to receive the bioactive ingredients. Heating to high temperatures is known to kill microorganisms including bacteria and fungi; however, microbial death is dependent upon exposure time and temperature. It is unknown whether the heating of cannabis at temperatures and times designated by a commercial vaporizer utilized in clinical settings will significantly decrease the microbial loads in cannabis plant material. Methods: To assess this question, bulk cannabis plant material supplied by National Institute on Drug Abuse (NIDA) was used to assess the impact of heating by a commercial vaporizer. Initial method development studies using a cannabis placebo spiked with Escherichia coli were performed to optimize culture and recovery parameters. Subsequent studies were carried out using the cannabis placebo, low delta-9 tetrahydrocannabinol (THC) potency and high THC potency cannabis materials exposed to either no heat or heating for 30 or 70 seconds at 190°C. Phosphate-buffered saline was added to the samples and the samples agitated to suspend the microorganism. Microbial growth after no heat or heating was evaluated by plating on growth media and determining the total aerobic microbial counts and total yeast and mold counts. Results and discussion: Overall, while there were trends of reductions in microbial counts with heating, these reductions were not statistically significant, indicating that heating using standard vaporization parameters of 70 seconds at 190°C may not eliminate the existing microbial bioburden, including any opportunistic pathogens. When cultured organisms were identified by DNA sequence analyses, several fungal and bacterial taxa were detected in the different products that have been associated with opportunistic infections or allergic reactions including Enterobacteriaceae, Staphylococcus, Pseudomonas, and Aspergillus.


Asunto(s)
Cannabis , Humanos , Calefacción , Nebulizadores y Vaporizadores , Calor , Temperatura
7.
Environ Mol Mutagen ; 61(2): 216-223, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31569280

RESUMEN

DNA adducts of carcinogenic polycyclic aromatic hydrocarbons (PAHs) play a critical role in the etiology of gastrointestinal tract cancers in humans and other species orally exposed to PAHs. Yet, the precise localization of PAH-DNA adducts in the gastrointestinal tract, and the long-term postmortem PAH-DNA adduct stability are unknown. To address these issues, the following experiment was performed. Mice were injected intraperitoneally with the PAH carcinogen benzo[a]pyrene (BP) and euthanized at 24 h. Tissues were harvested either at euthanasia (0 time), or after 4, 8, 12, 24, 48, and 168 hr (7 days) of storage at 4°C. Portions of mouse tissues were formalin-fixed, paraffin-embedded, and immunohistochemically (IHC) evaluated by incubation with r7,t8-dihydroxy-t-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene (BPDE)-DNA antiserum and H-scoring. The remaining tissues were frozen, and DNA was extracted and assayed for the r7,t8,t9-trihydroxy-c-10-(N 2 -deoxyguanosyl)-7,8,9,10-tetrahydrobenzo[a]pyrene (BPdG) adduct using two quantitative assays, the BPDE-DNA chemiluminescence immunoassay (CIA), and high-performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC-ES-MS/MS). By IHC, which required intact nuclei, BPdG adducts were visualized in forestomach basal cells, which included gastric stem cells, for up to 7 days. In proximal small intestine villus epithelium BPdG adducts were visualized for up to 12 hr. By BPDE-DNA CIA and HPLC-ES-MS/MS, both of which used DNA for analysis and correlated well (P= 0.0001), BPdG adducts were unchanged in small intestine, forestomach, and lung stored at 4°C for up to 7 days postmortem. In addition to localization of BPdG adducts, this study reveals the feasibility of examining PAH-DNA adduct formation in wildlife species living in colder climates. Environ. Mol. Mutagen. 61:216-223, 2020. © 2019 Wiley Periodicals, Inc.


Asunto(s)
Benzo(a)pireno/análisis , Carcinógenos Ambientales/análisis , Aductos de ADN/análisis , Animales , Benzo(a)pireno/administración & dosificación , Carcinógenos Ambientales/administración & dosificación , Cromatografía Líquida de Alta Presión , Aductos de ADN/administración & dosificación , Intestino Delgado/química , Mediciones Luminiscentes , Masculino , Ratones , Estómago/química , Espectrometría de Masas en Tándem , Distribución Tisular
8.
Regul Toxicol Pharmacol ; 108: 104436, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31381939

RESUMEN

BACKGROUND: In recent years, there has been great interest from academia, industry and government scientists for an increased understanding of the mode of action of vaccine adjuvants to characterize the safety and efficacy of vaccines. In this context, pharmacokinetic (PK) and biodistribution studies are useful for quantifying the concentration of vaccine adjuvants in mechanistically or toxicologically relevant target tissues. METHODS: In this study, we conducted a comparative analysis of the PK and biodistribution profile of radiolabeled squalene for up to 336 h (14 days) after intramuscular injection of mice with adjuvanted H5N1 influenza vaccines. The evaluated adjuvants included an experimental-grade squalene-in-water (SQ/W) emulsion (AddaVax®) and an adjuvant system (AS03®) that contained squalene and α-tocopherol in the oil phase of the emulsion. RESULTS: The half-life of the initial exponential decay from quadriceps muscle was 1.5 h for AS03 versus 12.9 h for AddaVax. At early time points (1-6 h), there was about a 10-fold higher concentration of labeled squalene in draining lymph nodes following AS03 injection compared to AddaVax. The area-under-concentration curve up to 336 h (AUC0-336hr) and peak concentration of squalene in spleen (immune organ) was about 1.7-fold higher following injection of AS03 than AddaVax. The peak systemic tissue concentration of squalene from the two adjuvants, with or without antigen, remained below 1% of injected dose for toxicologically relevant target tissues, such as spinal cord, brain, and kidney. The pharmacokinetics of AS03 was unaffected by the presence of H5N1 antigen. CONCLUSIONS: This study demonstrates a rapid decline of AS03 from the quadriceps muscles of mice as compared to conventional SQ/W emulsion adjuvant, with an increased transfer to mechanistically relevant tissues such as local lymph nodes. Systemic tissue exposure to potential toxicological target tissues was very low.


Asunto(s)
Adyuvantes Inmunológicos/farmacocinética , Subtipo H5N1 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/farmacocinética , Polisorbatos/farmacocinética , Escualeno/farmacocinética , alfa-Tocoferol/farmacocinética , Animales , Antígenos/inmunología , Combinación de Medicamentos , Emulsiones , Femenino , Inyecciones Intramusculares , Ganglios Linfáticos/metabolismo , Masculino , Ratones Endogámicos BALB C , Músculo Cuádriceps/metabolismo , Distribución Tisular
9.
Food Chem Toxicol ; 132: 110597, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31233874

RESUMEN

Arsenic is prevalent in contaminated drinking water and affects more than 140 million people in 50 countries. While the wide-ranging effects of arsenic on neurological development and cancer draw the majority of concern, arsenic's effects on the gut mucosa-associated immune system are often overlooked. In this study, we show that 24 h after a single dose [low dose (50 µg/kg bw), medium dose (100 µg/kg bw) or high dose (200 µg/kg bw)] of arsenic by oral gavage, mice show significantly reduced gut mucosa-associated mRNA expression for the key genes involved in the signaling pathways central to immune responses, such as Nuclear factor κB (NFκB), Extracellular signal-regulated protein kinases 1 and 2 (ERK1/2), p38 and Myeloid differentiation protein 88-dependent (Myd88) pathways. Additionally, mRNA expression of apoptosis, inflammasomes and inflammatory response genes are significantly downregulated in the animals exposed to arsenic. Comparisons of time-dependent effects (24 h vs 48 h) from low dose arsenic exposed animals showed a significant shift in expression of Myd88 alone, suggesting that the down regulation was sustained for the key genes/signaling pathway. An extended eight-day exposure to arsenic showed a decreased state of immune preparedness, though not as diminished as seen in the single dose exposure.


Asunto(s)
Arsénico/efectos adversos , Sistema Inmunológico/efectos de los fármacos , Intestinos/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , ARN Mensajero/metabolismo , Contaminantes Químicos del Agua/efectos adversos , Administración Oral , Animales , Arsénico/administración & dosificación , Regulación hacia Abajo , Femenino , Inflamasomas/genética , Intestinos/inmunología , Sistema de Señalización de MAP Quinasas/genética , Ratones , Factor 88 de Diferenciación Mieloide/genética , FN-kappa B/genética , ARN Mensajero/genética , Factores de Tiempo , Contaminantes Químicos del Agua/administración & dosificación
10.
Food Chem Toxicol ; 130: 22-31, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31091427

RESUMEN

Arsenic species contaminate food and water, with typical dietary intake below 1 µg/kg bw/d. Exposure to arsenic in heavily contaminated drinking water is associated with human diseases, including cardiovascular and respiratory disorders, diabetes, and cancer. Dietary intake assessments show that rice and seafood are the primary contributors to intake of both inorganic arsenic and dimethylarsinic acid (DMAV) and at similar magnitudes. DMAV plays a central role in the toxicology of arsenic because enzymatic methylation of arsenite produces DMAV as the predominant metabolite, which may promote urinary clearance but also generates reactive intermediates, predominantly DMAIII, that bind extensively to cellular thiols. Both inorganic arsenic and DMAV are carcinogenic in chronically exposed rodents. This study measured pentavalent and trivalent arsenic species in blood and tissues after oral and intravenous administration of DMAV (50 µg As/kg bw). DMAV underwent extensive first-pass metabolism in the intestine and liver, exclusively by reduction to DMAIII, which bound extensively to blood and tissues. The results confirm a role for methylation-independent reductive metabolism in producing fluxes of DMAIII that presumably underlie arsenic toxicity and indicate the need to include all dietary intake of inorganic arsenic and DMAV in risk assessments.


Asunto(s)
Ácido Cacodílico/metabolismo , Administración Oral , Animales , Ácido Cacodílico/administración & dosificación , Ácido Cacodílico/farmacocinética , Eritrocitos/metabolismo , Femenino , Inyecciones Intravenosas , Ratones
11.
Food Chem Toxicol ; 123: 28-41, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30342114

RESUMEN

Arsenic is a ubiquitous contaminant, with typical human dietary intake below 1 µg/kg bw/d and extreme drinking water exposures up to ∼50 µg/kg bw/d. The formation and binding of trivalent metabolites are central to arsenic toxicity and strong human evidence suggests special concern for early life exposures in the etiology of adult diseases, especially cancer. This study measured the metabolism and disposition of arsenite in neonatal mice to understand the role of maturation in metabolic activation and detoxification of arsenic. Many age-related differences were observed after gavage administration of arsenite, with consistent evidence in blood and tissues for higher exposures to trivalent arsenic species in neonatal mice related to the immaturity of metabolic and/or excretory functions. The evidence for greater tissue binding of arsenic species in young mice is consistent with enhanced susceptibility to toxicity based on metabolic and toxicokinetic differences alone. Lactational transfer from arsenite-dosed dams to suckling mice was minimal, based on no dosing-related changes in the levels of arsenic species in pup blood or milk collected from the dams. Animal models evaluating whole-life exposure to inorganic arsenic must use direct dosing in early neonatal life to predict accurately potential toxicity from early life exposures in children.


Asunto(s)
Intoxicación por Arsénico/metabolismo , Arsenicales/metabolismo , Arsenitos/metabolismo , Leche/química , Compuestos de Sodio/metabolismo , Animales , Intoxicación por Arsénico/fisiopatología , Arsenicales/química , Arsenitos/química , Femenino , Contaminación de Alimentos , Humanos , Lactancia , Masculino , Ratones , Leche/metabolismo , Compuestos de Sodio/química , Distribución Tisular , Toxicocinética
12.
Food Chem Toxicol ; 121: 676-686, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30278242

RESUMEN

Arsenic is a ubiquitous contaminant, with typical dietary intake below 1 µg/kg bw/d and drinking water exposures up to 50 µg/kg bw/d. Arsenic exposures are associated with human diseases and doses of toxicological concern are similar to typical dietary intake. Metabolism of arsenite to dimethylarsinate (DMAV) by arsenite-3-methyltransferase (As3MT) promotes clearance, but also generates reactive trivalent intermediates that bind extensively to cellular thiols. This study measured pentavalent and trivalent arsenic species in blood and tissues after oral and intravenous administration of arsenite (50 µg/kg bw). After oral administration, the intestine and liver contained elevated levels of AsIII and MMAIII, relative to erythrocytes, lung, and kidney, suggesting incomplete conversion to DMA during first-pass metabolism. However, blood concentrations of the predominant species, DMA, were similar for oral and intravenous dosing. While all tissues examined contained DMAIII, muscle, brain, and plasma had undetectable levels of MMAIII. Tissue levels of arsenic species were similar following intravenous vs. oral administration, except lower in the intestine. The results confirm the role of metabolism in producing fluxes of putatively toxic trivalent arsenic intermediates. Tissue dosimetry suggests that the intestine, liver, lung, and kidney could be more susceptible to effects of bound arsenic, relative to muscle and brain.


Asunto(s)
Arsénico/clasificación , Arsenitos/farmacocinética , Compuestos de Sodio/farmacocinética , Administración Oral , Animales , Área Bajo la Curva , Arsénico/química , Arsenitos/química , Eritrocitos , Femenino , Semivida , Inyecciones Intravenosas , Ratones , Reproducibilidad de los Resultados , Compuestos de Sodio/química
13.
Arch Toxicol ; 92(11): 3391-3402, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30238133

RESUMEN

Triclosan, a widely used broad spectrum anti-bacterial agent, is hepatotoxic in rodents and exhibits differential effects on mouse and human peroxisome proliferator-activated receptor alpha (PPARα) in vitro; however, the mechanism underlying triclosan-induced liver toxicity has not been elucidated. This study examined the role of mouse and human PPARα in triclosan-induced liver toxicity by comparing the effects between wild-type and PPARα-humanized mice. Female mice of each genotype received dermal applications of 0, 58, or 125 mg triclosan/kg body weight daily for 13 weeks. Following the treatment, triclosan caused an increase in liver weight and relative liver weight only in wild-type mice. The expression levels of PPARα target genes cytochrome P450 4A and acyl-coenzyme A oxidase 1 were increased in livers of both wild-type and PPARα-humanized mice, indicating that triclosan activated PPARα. Triclosan also elevated the expression levels of peroxisomal membrane protein PMP70 and catalase in the livers of both genotypes, suggesting that triclosan promoted the production of hepatocyte peroxisomes. There was an enhanced expression of cyclin D1, c-myc, proliferating cell nuclear antigen, and Ki67, and a higher percentage of BrdU-labeled hepatocytes in wild-type mice, but not in PPARα-humanized mice, demonstrating triclosan-activated PPARα had differential effects on the hepatocyte proliferation. These findings imply that the differential effects of triclosan-activated PPARα on cell proliferation may play a role in the species differences in triclosan-induced liver toxicity.


Asunto(s)
Hígado/efectos de los fármacos , PPAR alfa/fisiología , Triclosán/toxicidad , Animales , Proliferación Celular/efectos de los fármacos , Femenino , Hepatocitos/efectos de los fármacos , Hepatocitos/fisiología , Humanos , Antígeno Ki-67/análisis , Masculino , Ratones , Ratones Endogámicos C57BL , PPAR alfa/efectos de los fármacos , Peroxisomas/efectos de los fármacos , Especificidad de la Especie
14.
mBio ; 9(4)2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30108172

RESUMEN

Intestinal microbiota composition and gut-associated immune response can contribute to the toxicity of arsenic. We investigated the potential toxicity of short-term arsenic exposure on gut microbiome composition, intestinal immune status, microbial arsenic resistance gene, and arsenic metabolic profiles in adult and developmental stages of CD-1 mice. The potential toxicity of arsenite [As(III)] was determined for two life stages: (i) adult animals at 24 or 48 h after single gavage (0.05 mg/kg body weight [b.w.] [low dose], 0.1 mg/kg b.w. [medium dose], and 0.2 mg/kg b.w. [high dose]) and repeated exposure at 1 mg/liter for 8 days and (ii) postnatal day 10 (PND10) and PND21 after single gavage (0.05 mg/kg b.w.). Dose- and time-dependent responses in bacterial recovery/microbial composition were observed in adults after a single gavage. Repeated exposure caused a transient decrease in the recovery of intestinal bacteria, a shift in the bacterial population with abundance of arsenic resistance genes, and evidence for host metabolism of arsenite into less-reactive trivalent methylated species. Arsenic exposure in adult animals induced high levels of CC chemokines and of proinflammatory and anti-inflammatory cytokine secretion in intestine. Arsenic exposure at PND21 resulted in the development of distinct bacterial populations. Results of this study highlight significant changes in the intestinal microbiome and gut-associated immune status during a single or repeated exposure to arsenic in juvenile and adult animals. The data warrant investigation of the long-term effects of oral arsenic exposure on the microbiome and of immune system development and responses.IMPORTANCE Transformation of organic arsenic to toxic inorganic arsenic (iAs) is likely carried out by intestinal bacteria, and iAs may alter the viability of certain microbial populations. This study addressed the impact of arsenic exposure on intestinal microbiota diversity and host gut-associated immune mediators during early development or adulthood using scenarios of acute or repeated doses. During acute arsenic exposure, animals developed defense functions characterized by higher abundances of bacteria that are involved in arsenic resistance or detoxification mechanisms. Arsenite had a negative effect on the abundance of bacterial species that are involved in the conversion of protein to butyrate, which is an alternative energy source in the intestine. The intestinal mucosal immune cytokine profile reflected a mechanism of protection from arsenic toxicity.


Asunto(s)
Arsenitos/toxicidad , Microbioma Gastrointestinal/efectos de los fármacos , Mucosa Intestinal/inmunología , Animales , Animales Recién Nacidos , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Citocinas/inmunología , Femenino , Mucosa Intestinal/efectos de los fármacos , Metaboloma , Ratones , ARN Ribosómico 16S/genética
15.
Epigenetics ; 13(7): 704-720, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30001178

RESUMEN

Bisphenol A (BPA), an endocrine disrupting chemical (EDC), is a ubiquitous pollutant. As part of the Consortium Linking Academic and Regulatory Insights on BPA Toxicity (CLARITY-BPA), we sought to determine whether exposure of Sprague-Dawley rats to 2,500 µg/kg/day BPA (BPA) or 0.5 µg/kg/day ethinyl estradiol (EE) from gestational day 6 through postnatal day 21 induces behavior-relevant gene expression and DNA methylation changes in hippocampus and hypothalamus at adulthood. RNA and DNA were isolated from both regions. Expression of ten genes (Dnmt1, Dnmt3a, Dnmt3b, Esr1, Esr2, Avp, Ar, Oxt, Otr, and Bdnf) presumably altered by early-life BPA/EE exposure was examined. Three genes (Bdnf, Dnmt3b, and Esr1) were studied for DNA methylation changes in their putative 5' promoter regions. Molecular changes in hippocampus were correlated to prior Barnes maze performance, including sniffing correct holes, distance traveled, and velocity. Exposure to BPA and/or EE disrupted patterns of sexually dimorphic gene expression/promoter DNA methylation observed in hippocampus and hypothalamus of controls. In the hippocampus of female offspring, BPA exposure resulted in hypermethylation of the putative 5' promoter region of Bdnf, while EE exposure induced hypomethylation. Bdnf methylation was weakly associated with Bdnf expression in hippocampi of female rats. Hippocampal Bdnf expression in females showed a weak negative association with sniffing correct hole in Barnes maze. Hippocampal expression of Avp, Esr2, Oxt, and Otr was strongly associated with velocity of control rats in Barnes maze. Findings suggest BPA exposure induced non-EE-like gene expression and epigenetic changes in adult rat hippocampi, a region involved in spatial navigation.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Metilación de ADN/efectos de los fármacos , Disruptores Endocrinos/toxicidad , Etinilestradiol/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/efectos de los fármacos , Fenoles/toxicidad , Efectos Tardíos de la Exposición Prenatal/patología , Animales , Animales Recién Nacidos , Conducta Animal/efectos de los fármacos , Estrógenos/farmacología , Femenino , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/tratamiento farmacológico , Efectos Tardíos de la Exposición Prenatal/genética , Ratas , Ratas Sprague-Dawley
16.
Anaerobe ; 52: 29-42, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29852249

RESUMEN

The use of smokeless tobacco products (STPs) can cause many serious health problems. The oral microbiota plays important roles in oral and systemic health, and the disruption in the oral microbial population is linked to periodontal disease and other health problems. To assess the impact of smokeless tobacco on oral microbiota in vivo, high-throughput sequencing was used to examine the oral microbiota present in Syrian Golden hamster cheek pouches. Sixteen hamsters were divided into four groups and treated with the STP Grizzly snuff (0, 2.5, 25, or 250 mg) twice daily for 4 weeks. After 0, 1, 2, 3, and 4 weeks of treatment, bacterial genomic DNA was extracted from oral swabs sampled from the cheek pouches of the hamsters. The oral bacterial communities present in different hamster groups were characterized by sequencing the hypervariable regions V1-V2 and V4 of 16S rRNA using the Illumina MiSeq platform. Fifteen phyla, 27 classes, 59 orders, 123 families, and 250 genera were identified from 4,962,673 sequence reads from the cheek pouch samples. The bacterial diversity and taxonomic abundances for the different treatment groups were compared to the non-treated hamsters. Bacterial diversity was significantly decreased after 4 weeks of exposure to 2.5 mg, and significantly increased by exposure to 250 mg STP. Treatment with 250 mg STP significantly increased Firmicutes, transiently increased Cyanobacteria and TM7, and decreased Bacteroidetes and Fusobacteria compared to the control group. At the genus level, 4 weeks of administration of 250 mg STP significantly increased Granulicatella, Streptococcus, Oribacterium, Anaerococcus, Acidaminococcus, Actinomyces, Eubacterium, Negativicoccus, and Staphylococcus, and decreased Bacteroides, Buleidia, Dialister, and Leptotrichia, and transiently decreased Arcanobacterium compared to the control group. For the first time, an animal model was used for evaluating the effects of STP on oral microbiota by metagenomic sequencing. Our results provide a view of the shift of the oral microbiota in response to STP exposure in Syrian Golden hamster. Our findings indicate that the use of smokeless tobacco significantly disrupts the oral microbiota.


Asunto(s)
Bacterias/aislamiento & purificación , Carcinogénesis/efectos de los fármacos , Microbiota/efectos de los fármacos , Neoplasias de la Boca/etiología , Neoplasias de la Boca/microbiología , Boca/microbiología , Tabaco sin Humo/efectos adversos , Animales , Bacterias/clasificación , Bacterias/genética , Cricetinae , ADN Bacteriano/genética , Modelos Animales de Enfermedad , Humanos , Masculino , Mesocricetus , Filogenia , ARN Ribosómico 16S/genética
17.
Food Chem Toxicol ; 115: 178-184, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29530638

RESUMEN

Arsenic is ubiquitous in the earth's crust, and human diseases are linked with exposures that are similar to dietary intake estimates. Metabolic methylation of inorganic arsenic facilitates excretion of pentavalent metabolites and decreases acute toxicity; however, tissue binding of trivalent arsenic intermediates is evidence for concomitant metabolic activation. Pregnant and fetal CD-1 mice comprise a key animal model for arsenic carcinogenesis since adult-only exposures have minimal effects. This study evaluated inorganic arsenic and its metabolites in pentavalent and trivalent states in blood and tissues from maternal and fetal CD-1 mice after repeated administration of arsenite through drinking water. After 8 days of exposure, DMA species were ubiquitous in dams and fetuses. Despite the presence of MMAIII in dams, none was observed in any fetal sample. This difference may be important in assessing fetal susceptibility to arsenic toxicity because MMA production has been linked with human disease. Binding of DMAIII in fetal tissues provided evidence for metabolic activation, although the role for such binding in arsenic toxicity is unclear. This study provides links between administered dose, metabolism, and internal exposures from a key animal model of arsenic toxicity to better understand risks from human exposure to environmental arsenic.


Asunto(s)
Intoxicación por Arsénico/metabolismo , Arsenitos/metabolismo , Agua Potable/análisis , Embarazo/metabolismo , Compuestos de Sodio/metabolismo , Contaminantes Químicos del Agua/metabolismo , Animales , Animales Recién Nacidos/sangre , Arsénico/sangre , Arsénico/química , Arsénico/metabolismo , Intoxicación por Arsénico/sangre , Intoxicación por Arsénico/embriología , Intoxicación por Arsénico/etiología , Arsenitos/química , Femenino , Feto/metabolismo , Humanos , Masculino , Exposición Materna/efectos adversos , Ratones , Embarazo/sangre , Compuestos de Sodio/química , Contaminantes Químicos del Agua/sangre , Contaminantes Químicos del Agua/química
18.
Toxicol Appl Pharmacol ; 347: 1-9, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29596923

RESUMEN

Bisphenol A (BPA) is a ubiquitous industrial chemical that has been identified as an endocrine disrupting compound (EDC). There is growing concern that early life exposures to EDCs, such as BPA, can adversely affect the male reproductive tract and function. This study was conducted as part of the Consortium Linking Academic and Regulatory Insights on BPA Toxicity (CLARITY-BPA) to further delineate the toxicities associated with continuous exposure to BPA from early gestation, and to comprehensively examine the elicited effects on testes and sperm. NCTR Sprague Dawley rat dams were gavaged from gestational day (GD) 6 until parturition, and their pups were directly gavaged daily from postnatal day (PND) 1 to 90 with BPA (2.5, 25, 250, 2500, 25,000, 250,000 µg/kg/d) or vehicle control. At PND 90, the testes and sperm were collected for evaluation. The testes were histologically evaluated for altered germ cell apoptosis, sperm production, and altered spermiation. RNA and DNA isolated from sperm were assessed for elicited changes in global mRNA transcript abundance and altered DNA methylation. Effects of BPA were observed in changes in body, testis and epididymis weights only at the highest administered dose of BPA of 250,000 µg/kg/d. Genome-wide transcriptomic and epigenomic analyses failed to detect robust alterations in sperm mRNA and DNA methylation levels. These data indicate that prolonged exposure starting in utero to BPA over a wide range of levels has little, if any, impact on the testes and sperm molecular profiles of 90 day old rats as assessed by the histopathologic, morphometric, and molecular endpoints evaluated.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Contaminantes Ambientales/toxicidad , Fenoles/toxicidad , Efectos Tardíos de la Exposición Prenatal , Espermatozoides/efectos de los fármacos , Testículo/efectos de los fármacos , Factores de Edad , Animales , Apoptosis/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Edad Gestacional , Masculino , Exposición Materna/efectos adversos , Embarazo , Ratas Sprague-Dawley , Recuento de Espermatozoides , Espermatogénesis/efectos de los fármacos , Espermatozoides/metabolismo , Espermatozoides/patología , Testículo/embriología , Testículo/metabolismo , Testículo/patología
19.
Artículo en Inglés | MEDLINE | ID: mdl-29179064

RESUMEN

According to the World Health Organization, the consumption of tobacco products is the single largest cause of preventable deaths in the world, exceeding the total aggregated number of deaths caused by diseases such as AIDS, tuberculosis, and malaria. An important element in the evaluation of the health risks associated with the consumption of tobacco products is the assessment of the internal exposure to the tobacco constituents responsible for their addictive (e.g. nicotine) and carcinogenic (e.g. N-nitrosamines such as NNN and NNK) properties. However, the assessment of the serum levels of these compounds is often challenging from an analytical standpoint, in particular when limited sample volumes are available and low detection limits are required. Currently available analytical methods often rely on complex multi-step sample preparation procedures, which are prone to low analyte recoveries and ex-vivo contamination due to the ubiquitous nature of these compounds as background contaminants. In order to circumvent these problems, we report a facile and highly sensitive method for the simultaneous quantification of nicotine, cotinine, NNN, and NNK in serum samples. The method relies on a simple "one pot" liquid-liquid extraction procedure and isotope dilution ultra-high pressure (UPLC) hydrophilic interaction liquid chromatography (HILIC) coupled with tandem mass spectrometry. The method requires only 10µL of serum and presents a limit of quantification of 0.02nmol (3000pg/mL) nicotine, 0.6pmol (100pg/mL) cotinine, 0.05pmol NNK (10pg/mL), and 0.06pmol NNN (10pg/mL), making it appropriate for pharmacokinetic evaluations.


Asunto(s)
Carcinógenos/análisis , Cotinina/sangre , Nicotina/sangre , Nitrosaminas/sangre , Espectrometría de Masas en Tándem/métodos , Cromatografía Líquida de Alta Presión/métodos , Estabilidad de Medicamentos , Humanos , Límite de Detección , Modelos Lineales , Reproducibilidad de los Resultados , Espectrometría de Masa por Ionización de Electrospray/métodos
20.
Food Chem Toxicol ; 111: 482-493, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29217265

RESUMEN

Arsenic (As) is ubiquitous in the earth's crust, with typical dietary intake in developed countries <1 µg/kg bw/d, and atypical groundwater exposures in developing countries approaching 50 µg/kg bw/d. Arsenic exposures are linked with human diseases and doses of toxicological concern are similar to typical dietary intake estimates. The methylation of arsenite by arsenite-3-methyltransferase (As3MT) promotes the clearance of arsenic as pentavalent species, but also generates reactive trivalent intermediates. This study measured inorganic arsenic and its metabolites in pentavalent and trivalent states in blood, tissues, and excreta after oral administration of arsenite (50-200 µg/kg bw). While liver was a major site for clearance of arsenite and formation of methylated species, it also had extensive binding of trivalent intermediates; however, thiol exchange and oxidation reactions of trivalent arsenic were facile since dimethylarsinic acid (DMAV) was the predominant species in blood and urine. Consistent evidence was observed for a non-linear relationship between doses above 50 µg/kg bw and levels of bound trivalent As metabolites. The abundance of protein-bound trivalent arsenic within target tissues should correlate with disruption of critical cellular processes, which rely on defined interactions of thiol functional groups, and could provide dose-response relationships from animal models for human risk assessment.


Asunto(s)
Arsenitos/química , Arsenitos/farmacocinética , Compuestos de Sodio/química , Compuestos de Sodio/farmacocinética , Animales , Arsenitos/administración & dosificación , Arsenitos/toxicidad , Análisis Químico de la Sangre , Relación Dosis-Respuesta a Droga , Heces/química , Femenino , Riñón/efectos de los fármacos , Riñón/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Metilación , Ratones , Estructura Molecular , Oxidación-Reducción , Proyectos Piloto , Compuestos de Sodio/administración & dosificación , Compuestos de Sodio/toxicidad , Orina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...