Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(12)2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37373054

RESUMEN

Cows can live for over 20 years, but their productive lifespan averages only around 3 years after first calving. Liver dysfunction can reduce lifespan by increasing the risk of metabolic and infectious disease. This study investigated the changes in hepatic global transcriptomic profiles in early lactation Holstein cows in different lactations. Cows from five herds were grouped as primiparous (lactation number 1, PP, 534.7 ± 6.9 kg, n = 41), or multiparous with lactation numbers 2-3 (MP2-3, 634.5 ± 7.5 kg, n = 87) or 4-7 (MP4-7, 686.6 ± 11.4 kg, n = 40). Liver biopsies were collected at around 14 days after calving for RNA sequencing. Blood metabolites and milk yields were measured, and energy balance was calculated. There were extensive differences in hepatic gene expression between MP and PP cows, with 568 differentially expressed genes (DEGs) between MP2-3 and PP cows, and 719 DEGs between MP4-7 and PP cows, with downregulated DEGs predominating in MP cows. The differences between the two age groups of MP cows were moderate (82 DEGs). The gene expression differences suggested that MP cows had reduced immune functions compared with the PP cows. MP cows had increased gluconeogenesis but also evidence of impaired liver functionality. The MP cows had dysregulated protein synthesis and glycerophospholipid metabolism, and impaired genome and RNA stability and nutrient transport (22 differentially expressed solute carrier transporters). The genes associated with cell cycle arrest, apoptosis, and the production of antimicrobial peptides were upregulated. More surprisingly, evidence of hepatic inflammation leading to fibrosis was present in the primiparous cows as they started their first lactation. This study has therefore shown that the ageing process in the livers of dairy cows is accelerated by successive lactations and increasing milk yields. This was associated with evidence of metabolic and immune disorders together with hepatic dysfunction. These problems are likely to increase involuntary culling, thus reducing the average longevity in dairy herds.


Asunto(s)
Lactancia , Transcriptoma , Embarazo , Femenino , Bovinos , Animales , Paridad , Lactancia/genética , Leche/metabolismo , Hígado/metabolismo
2.
J Dairy Sci ; 105(6): 5124-5140, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35346462

RESUMEN

Direct measurements of methane (CH4) from individual animals are difficult and expensive. Predictions based on proxies for CH4 are a viable alternative. Most prediction models are based on multiple linear regressions (MLR) and predictor variables that are not routinely available in commercial farms, such as dry matter intake (DMI) and diet composition. The use of machine learning (ML) algorithms to predict CH4 emissions from across-country heterogeneous data sets has not been reported. The objectives were to compare performances of ML ensemble algorithm random forest (RF) and MLR models in predicting CH4 emissions from proxies in dairy cows, and assess effects of imputing missing data points on prediction accuracy. Data on CH4 emissions and proxies for CH4 from 20 herds were provided by 10 countries. The integrated data set contained 43,519 records from 3,483 cows, with 18.7% missing data points imputed using k-nearest neighbor imputation. Three data sets were created, 3k (no missing records), 21k (missing DMI imputed from milk, fat, protein, body weight), and 41k (missing DMI, milk fat, and protein records imputed). These data sets were used to test scenarios (with or without DMI, imputed vs. nonimputed DMI, milk fat, and protein), and prediction models (RF vs. MLR). Model predictive ability was evaluated within and between herds through 10-fold cross-validation. Prediction accuracy was measured as correlation between observed and predicted CH4, root mean squared error (RMSE) and mean normalized discounted cumulative gain (NDCG). Inclusion of DMI in the model improved within and between-herd prediction accuracy to 0.77 (RMSE = 23.3%) and 0.58 (RMSE = 31.9%) in RF and to 0.50 (RMSE = 0.327) and 0.13 (RMSE = 42.71) in MLR, respectively than when DMI was not included in the predictive model. When missing DMI records were imputed, within and between-herd accuracy increased to 0.84 (RMSE = 18.5%) and 0.63 (RMSE = 29.9%), respectively. In all scenarios, RF models out-performed MLR models. Results suggest routinely measured variables from dairy farms can be used in developing globally robust prediction models for CH4 if coupled with state-of-the-art techniques for imputation and advanced ML algorithms for predictive modeling.


Asunto(s)
Lactancia , Metano , Animales , Bovinos , Dieta/veterinaria , Femenino , Intestino Delgado/metabolismo , Metano/metabolismo , Leche/química
3.
J Sci Food Agric ; 101(8): 3394-3403, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33222175

RESUMEN

BACKGROUND: A robust proxy for estimating methane (CH4 ) emissions of individual dairy cows would be valuable especially for selective breeding. This study aimed to improve the robustness and accuracy of prediction models that estimate daily CH4 emissions from milk Fourier transform mid-infrared (FT-MIR) spectra by (i) increasing the reference dataset and (ii) adjusting for routinely recorded phenotypic information. Prediction equations for CH4 were developed using a combined dataset including daily CH4 measurements (n = 1089; g d-1 ) collected using the SF6 tracer technique (n = 513) and measurements using respiration chambers (RC, n = 576). Furthermore, in addition to the milk FT-MIR spectra, the variables of milk yield (MY) on the test day, parity (P) and breed (B) of cows were included in the regression analysis as explanatory variables. RESULTS: Models developed based on a combined RC and SF6 dataset predicted the expected pattern in CH4 values (in g d-1 ) during a lactation cycle, namely an increase during the first weeks after calving followed by a gradual decrease until the end of lactation. The model including MY, P and B information provided the best prediction results (cross-validation statistics: R2 = 0.68 and standard error = 57 g CH4 d-1 ). CONCLUSIONS: The models developed accounted for more of the observed variability in CH4 emissions than previously developed models and thus were considered more robust. This approach is suitable for large-scale studies (e.g. animal genetic evaluation) where robustness is paramount for accurate predictions across a range of animal conditions. © 2020 Society of Chemical Industry.


Asunto(s)
Bovinos/metabolismo , Metano/análisis , Leche/química , Espectrofotometría Infrarroja/métodos , Animales , Femenino , Lactancia , Metano/metabolismo , Leche/metabolismo , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...