Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Microbiol ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38839984

RESUMEN

Dengue is a major global health threat, and there are no approved antiviral agents. Prior research using Cas13 only demonstrated dengue mitigation in vitro. Here we demonstrate that systemic delivery of mRNA-encoded Cas13a and guide RNAs formulated in lipid nanoparticles can be used to treat dengue virus (DENV) 2 and 3 in mice. First, we identified guides against DENV 2 and 3 that demonstrated in vitro efficacy. Next, we confirmed that Cas13 enzymatic activity is necessary for DENV 2 or DENV 3 mitigation in vitro. Last, we show that a single dose of lipid-nanoparticle-formulated mRNA-encoded Cas13a and guide RNA, administered 1 day post-infection, promotes survival of all infected animals and serum viral titre decreases on days 2 and 3 post-infection after lethal challenge in mice. Off-target analysis in mice using RNA sequencing showed no collateral cleavage. Overall, these data demonstrate the potential of mRNA-encoded Cas13 as a pan-DENV drug.

2.
Front Immunol ; 14: 1229051, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37965320

RESUMEN

Monoclonal antibodies (mAbs) can be used to complement immunization for the therapy of influenza virus infection. We have established the pig, a natural large animal host for influenza A, with many physiological, immunological, and anatomical similarities to humans, as an appropriate model for testing mAbs. We have evaluated the protective efficacy of the strongly neutralizing human anti-hemagglutinin mAb, 2-12C in the pig influenza model. Intravenous administration of recombinant 2-12C reduced virus load and lung pathology, however, it did not prevent virus nasal shedding and, consequently, transmission. This may be because the pigs were directly infected intranasally with a high dose of the H1N1pdm09 virus. To address this, we developed a contact challenge model in which the animals were given 2-12C and one day later co-housed with donor pigs previously infected intra-nasally with H1N1pdm09. 2-12C pre-treatment completely prevented infection. We also administered a lower dose of 2-12C by aerosol to the respiratory tract, but this did not prevent shedding in the direct challenge model, although it abolished lung infection. We propose that the direct contact challenge model of pig influenza may be useful for evaluating candidate mAbs and emerging delivery platforms prior to clinical trials.


Asunto(s)
Gripe Humana , Infecciones por Orthomyxoviridae , Porcinos , Humanos , Animales , Anticuerpos Monoclonales , Aerosoles y Gotitas Respiratorias , Hemaglutininas
3.
J Control Release ; 357: 394-403, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37028451

RESUMEN

Lipid nanoparticles (LNPs) are a clinically relevant way to deliver therapeutic mRNA to hepatocytes in patients. However, LNP-mRNA delivery to end-stage solid tumors such as head and neck squamous cell carcinoma (HNSCC) remains more challenging. While scientists have used in vitro assays to evaluate potential nanoparticles for HNSCC delivery, high-throughput delivery assays performed directly in vivo have not been reported. Here we use a high-throughput LNP assay to evaluate how 94 chemically distinct nanoparticles delivered nucleic acids to HNSCC solid tumors in vivo. DNA barcodes were used to identify LNPHNSCC, a novel LNP for systemic delivery to HNSCC solid tumors. Importantly, LNPHNSCC retains tropism to HNSCC solid tumors while minimizing off-target delivery to the liver.


Asunto(s)
Neoplasias de Cabeza y Cuello , Nanopartículas , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello , ARN Mensajero/genética , Lípidos , Neoplasias de Cabeza y Cuello/genética , ARN Interferente Pequeño/genética
4.
Nat Mater ; 22(3): 369-379, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36443576

RESUMEN

Messenger RNA has now been used to vaccinate millions of people. However, the diversity of pulmonary pathologies, including infections, genetic disorders, asthma and others, reveals the lung as an important organ to directly target for future RNA therapeutics and preventatives. Here we report the screening of 166 polymeric nanoparticle formulations for functional delivery to the lungs, obtained from a combinatorial synthesis approach combined with a low-dead-volume nose-only inhalation system for mice. We identify P76, a poly-ß-amino-thio-ester polymer, that exhibits increased expression over formulations lacking the thiol component, delivery to different animal species with varying RNA cargos and low toxicity. P76 allows for dose sparing when delivering an mRNA-expressed Cas13a-mediated treatment in a SARS-CoV-2 challenge model, resulting in similar efficacy to a 20-fold higher dose of a neutralizing antibody. Overall, the combinatorial synthesis approach allowed for the discovery of promising polymeric formulations for future RNA pharmaceutical development for the lungs.


Asunto(s)
COVID-19 , Animales , Ratones , ARN Mensajero/genética , SARS-CoV-2/genética , Polímeros/metabolismo , Pulmón , ARN/metabolismo
5.
Adv Sci (Weinh) ; 9(34): e2202771, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36316224

RESUMEN

Despite the success of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccines, there remains a clear need for new classes of preventatives for respiratory viral infections due to vaccine hesitancy, lack of sterilizing immunity, and for at-risk patient populations, including the immunocompromised. While many neutralizing antibodies have been identified, and several approved, to treat COVID-19, systemic delivery, large doses, and high costs have the potential to limit their widespread use, especially in low- and middle-income countries. To use these antibodies more efficiently, an inhalable formulation is developed that allows for the expression of mRNA-encoded, membrane-anchored neutralizing antibodies in the lung to mitigate SARS-CoV-2 infections. First, the ability of mRNA-encoded, membrane-anchored, anti-SARS-CoV-2 antibodies to prevent infections in vitro is demonstrated. Next, it is demonstrated that nebulizer-based delivery of these mRNA-expressed neutralizing antibodies potently abrogates disease in the hamster model. Overall, these results support the use of nebulizer-based mRNA expression of neutralizing antibodies as a new paradigm for mitigating respiratory virus infections.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , ARN Mensajero/genética , Anticuerpos Neutralizantes/uso terapéutico
6.
Nat Nanotechnol ; 17(3): 310-318, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35132167

RESUMEN

Nanoparticles are tested in mice and non-human primates before being selected for clinical trials. Yet the extent to which mRNA delivery, as well as the cellular response to mRNA drug delivery vehicles, is conserved across species in vivo is unknown. Using a species-independent DNA barcoding system, we have compared how 89 lipid nanoparticles deliver mRNA in mice with humanized livers, primatized livers and four controls: mice with 'murinized' livers as well as wild-type BL/6, Balb/C and NZB/BlNJ mice. We assessed whether functional delivery results in murine, non-human primate and human hepatocytes can be used to predict delivery in the other species in vivo. By analysing in vivo hepatocytes by RNA sequencing, we identified species-dependent responses to lipid nanoparticles, including mRNA translation and endocytosis. These data support an evidence-based approach to making small-animal preclinical nanoparticle studies more predictive, thereby accelerating the development of RNA therapies.


Asunto(s)
Lípidos , Nanopartículas , Animales , Liposomas , Ratones , ARN Mensajero/genética
7.
JCI Insight ; 6(23)2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34699383

RESUMEN

Understanding viral rebound in pediatric HIV-1 infection may inform the development of alternatives to lifelong antiretroviral therapy (ART) to achieve viral remission. We thus investigated viral rebound after analytical treatment interruption (ATI) in 10 infant macaques orally infected with SHIV.C.CH505 and treated with long-term ART. Rebound viremia was detected within 7 to 35 days of ATI in 9 of 10 animals, with posttreatment control of viremia seen in 5 of 5 Mamu-A*01+ macaques. Single-genome sequencing revealed that initial rebound virus was similar to viral DNA present in CD4+ T cells from blood, rectum, and lymph nodes before ATI. We assessed the earliest sites of viral reactivation immediately following ATI using ImmunoPET imaging. The largest increase in signal that preceded detectable viral RNA in plasma was found in the gastrointestinal (GI) tract, a site with relatively high SHIV RNA/DNA ratios in CD4+ T cells before ATI. Thus, the GI tract may be an initial source of rebound virus, but as ATI progresses, viral reactivation in other tissues likely contributes to the composition of plasma virus. Our study provides potentially novel insight into the features of viral rebound in pediatric infection and highlights the application of a noninvasive technique to monitor areas of HIV-1 expression in children.


Asunto(s)
Antirretrovirales/uso terapéutico , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Viremia/etiología , Animales , Femenino , Macaca , Masculino , Viremia/patología
8.
Nat Biomed Eng ; 5(9): 1059-1068, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34616046

RESUMEN

Lipid nanoparticles (LNPs) for the efficient delivery of drugs need to be designed for the particular administration route and type of drug. Here we report the design of LNPs for the efficient delivery of therapeutic RNAs to the lung via nebulization. We optimized the composition, molar ratios and structure of LNPs made of lipids, neutral or cationic helper lipids and poly(ethylene glycol) (PEG) by evaluating the performance of LNPs belonging to six clusters occupying extremes in chemical space, and then pooling the lead clusters and expanding their diversity. We found that a low (high) molar ratio of PEG improves the performance of LNPs with neutral (cationic) helper lipids, an identified and optimal LNP for low-dose messenger RNA delivery. Nebulized delivery of an mRNA encoding a broadly neutralizing antibody targeting haemagglutinin via the optimized LNP protected mice from a lethal challenge of the H1N1 subtype of influenza A virus, and delivered mRNA more efficiently than LNPs previously optimized for systemic delivery. A cluster approach to LNP design may facilitate the optimization of LNPs for other administration routes and therapeutics.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Nanopartículas , Animales , Liposomas , Pulmón , Ratones , ARN Mensajero , ARN Interferente Pequeño
9.
Nat Biotechnol ; 39(6): 717-726, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33536629

RESUMEN

Cas13a has been used to target RNA viruses in cell culture, but efficacy has not been demonstrated in animal models. In this study, we used messenger RNA (mRNA)-encoded Cas13a for mitigating influenza virus A and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in mice and hamsters, respectively. We designed CRISPR RNAs (crRNAs) specific for PB1 and highly conserved regions of PB2 of influenza virus, and against the replicase and nucleocapsid genes of SARS-CoV-2, and selected the crRNAs that reduced viral RNA levels most efficiently in cell culture. We delivered polymer-formulated Cas13a mRNA and the validated guides to the respiratory tract using a nebulizer. In mice, Cas13a degraded influenza RNA in lung tissue efficiently when delivered after infection, whereas in hamsters, Cas13a delivery reduced SARS-CoV-2 replication and reduced symptoms. Our findings suggest that Cas13a-mediated targeting of pathogenic viruses can mitigate respiratory infections.


Asunto(s)
COVID-19/terapia , Gripe Humana/terapia , ARN Mensajero/farmacología , SARS-CoV-2/genética , Animales , COVID-19/genética , COVID-19/virología , Sistemas CRISPR-Cas/genética , Cricetinae , Modelos Animales de Enfermedad , Humanos , Gripe Humana/genética , Gripe Humana/virología , Ratones , Orthomyxoviridae/efectos de los fármacos , Orthomyxoviridae/genética , Orthomyxoviridae/patogenicidad , ARN Mensajero/genética , ARN Viral/genética , Sistema Respiratorio/efectos de los fármacos , Sistema Respiratorio/metabolismo , SARS-CoV-2/patogenicidad
10.
PLoS Pathog ; 16(10): e1008987, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33031461

RESUMEN

The ribonucleocapsid complex of respiratory syncytial virus (RSV) is responsible for both viral mRNA transcription and viral replication during infection, though little is known about how this dual function is achieved. Here, we report the use of a recombinant RSV virus with a FLAG-tagged large polymerase protein, L, to characterize and localize RSV ribonucleocapsid structures during the early and late stages of viral infection. Through proximity ligation assays and super-resolution microscopy, viral RNA and proteins in the ribonucleocapsid complex were revealed to dynamically rearrange over time, particularly between 6 and 8 hours post infection, suggesting a connection between the ribonucleocapsid structure and its function. The timing of ribonucleocapsid rearrangement corresponded with an increase in RSV genome RNA accumulation, indicating that this rearrangement is likely involved with the onset of RNA replication and secondary transcription. Additionally, early overexpression of RSV M2-2 from in vitro transcribed mRNA was shown to inhibit virus infection by rearranging the ribonucleocapsid complex. Collectively, these results detail a critical understanding into the localization and activity of RSV L and the ribonucleocapsid complex during RSV infection.


Asunto(s)
Proteínas de la Nucleocápside/metabolismo , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/fisiología , Ribonucleoproteínas/metabolismo , Proteínas Virales/metabolismo , Replicación Viral , Células A549 , Animales , Chlorocebus aethiops , Humanos , Proteínas de la Nucleocápside/genética , ARN Viral/genética , ARN Viral/metabolismo , Infecciones por Virus Sincitial Respiratorio/genética , Infecciones por Virus Sincitial Respiratorio/metabolismo , Ribonucleoproteínas/genética , Transcripción Genética , Células Vero , Proteínas Virales/genética
11.
J Neuroinflammation ; 17(1): 197, 2020 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-32563258

RESUMEN

BACKGROUND: Appropriately modulating inflammation after traumatic brain injury (TBI) may prevent disabilities for the millions of those inflicted annually. In TBI, cellular mediators of inflammation, including macrophages and microglia, possess a range of phenotypes relevant for an immunomodulatory therapeutic approach. It is thought that early phenotypic modulation of these cells will have a cascading healing effect. In fact, an anti-inflammatory, "M2-like" macrophage phenotype after TBI has been associated with neurogenesis, axonal regeneration, and improved white matter integrity (WMI). There already exist clinical trials seeking an M2-like bias through mesenchymal stem/stromal cells (MSCs). However, MSCs do not endogenously synthesize key signals that induce robust M2-like phenotypes such as interleukin-4 (IL-4). METHODS: To enrich M2-like macrophages in a clinically relevant manner, we augmented MSCs with synthetic IL-4 mRNA to transiently express IL-4. These IL-4 expressing MSCs (IL-4 MSCs) were characterized for expression and functionality and then delivered in a modified mouse TBI model of closed head injury. Groups were assessed for functional deficits and MR imaging. Brain tissue was analyzed through flow cytometry, multi-plex ELISA, qPCR, histology, and RNA sequencing. RESULTS: We observed that IL-4 MSCs indeed induce a robust M2-like macrophage phenotype and promote anti-inflammatory gene expression after TBI. However, here we demonstrate that acute enrichment of M2-like macrophages did not translate to improved functional or histological outcomes, or improvements in WMI on MR imaging. To further understand whether dysfunctional pathways underlie the lack of therapeutic effect, we report transcriptomic analysis of injured and treated brains. Through this, we discovered that inflammation persists despite acute enrichment of M2-like macrophages in the brain. CONCLUSION: The results demonstrate that MSCs can be engineered to induce a stronger M2-like macrophage response in vivo. However, they also suggest that acute enrichment of only M2-like macrophages after diffuse TBI cannot orchestrate neurogenesis, axonal regeneration, or improve WMI. Here, we also discuss our modified TBI model and methods to assess severity, behavioral studies, and propose that IL-4 expressing MSCs may also have relevance in other cavitary diseases or in improving biomaterial integration into tissues.


Asunto(s)
Lesiones Traumáticas del Encéfalo/metabolismo , Interleucina-4/metabolismo , Macrófagos/metabolismo , Células Madre Mesenquimatosas/metabolismo , Animales , Modelos Animales de Enfermedad , Inflamación/metabolismo , Masculino , Ratones , Microglía/metabolismo
12.
Mol Ther ; 28(3): 805-819, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-31995741

RESUMEN

There is a clear need for low-cost, self-applied, long-lasting approaches to prevent human immunodeficiency virus (HIV) infection in both men and women, even with the advent of pre-exposure prophylaxis (PrEP). Broadly neutralizing antibodies represent an option to improve HIV prophylaxis, but intravenous delivery, cold-chain stability requirements, low cervicovaginal concentrations, and cost may preclude their use. Here, we present an approach to express the anti-GP120 broadly neutralizing antibody PGT121 in the primary site of inoculation, the female reproductive tract, using synthetic mRNA. Expression is achieved through aerosol delivery of unformulated mRNA in water. We demonstrated high levels of antibody expression for over 28 days with a single mRNA administration in the reproductive tract of sheep. In rhesus macaques, neutralizing antibody titers in secretions developed within 4 h and simian-HIV (SHIV) infection of ex vivo explants was prevented. Persistence of PGT121 in vaginal secretions and epithelium was achieved through the incorporation of a glycosylphosphatidylinositol (GPI) anchor into the heavy chain of the antibody. Overall, we present a new paradigm to deliver neutralizing antibodies to the female reproductive tract for the prevention of HIV infections.


Asunto(s)
Anticuerpos ampliamente neutralizantes/inmunología , Expresión Génica , Anticuerpos Anti-VIH/inmunología , Membrana Mucosa/inmunología , Membrana Mucosa/metabolismo , ARN Mensajero/administración & dosificación , Vagina , Vacunas contra el SIDA/administración & dosificación , Vacunas contra el SIDA/genética , Vacunas contra el SIDA/inmunología , Aerosoles , Animales , Chlorocebus aethiops , Femenino , Técnica del Anticuerpo Fluorescente , Infecciones por VIH/inmunología , VIH-1/inmunología , Ratones , Pruebas de Neutralización , ARN Mensajero/síntesis química , Ovinos , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Vagina/inmunología , Vagina/metabolismo , Células Vero
13.
Cancer Res ; 79(20): 5418-5431, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31481502

RESUMEN

Abnormal post-transcriptional regulation induced by alterations of mRNA-protein interactions is critical during tumorigenesis and cancer progression and is a hallmark of cancer cells. A more thorough understanding is needed to develop treatments and foresee outcomes. Cellular and mouse tumor models are insufficient for vigorous investigation as they lack consistency and translatability to humans. Moreover, to date, studies in human tumor tissue are predominately limited to expression analysis of proteins and mRNA, which do not necessarily provide information about the frequency of mRNA-protein interactions. Here, we demonstrate novel optimization of a method that is based on FISH and proximity ligation techniques to quantify mRNA interactions with RNA-binding proteins relevant for tumorigenesis and cancer progression in archival patient-derived tumor tissue. This method was validated for multiple mRNA-protein pairs in several cellular models and in multiple types of archival human tumor samples. Furthermore, this approach allowed high-throughput analysis of mRNA-protein interactions across a wide range of tumor types and stages through tumor microarrays. This method is quantitative, specific, and sensitive for detecting interactions and their localization at both the individual cell and whole-tissue scales with single interaction sensitivity. This work presents an important tool in investigating post-transcriptional regulation in cancer on a high-throughput scale, with great potential for translatability into any applications where mRNA-protein interactions are of interest. SIGNIFICANCE: This work presents an approach to sensitively, specifically, and quantitatively detect and localize native mRNA and protein interactions for analysis of abnormal post-transcriptional regulation in patient-derived archival tumor samples.


Asunto(s)
Neoplasias del Colon/química , Ensayos Analíticos de Alto Rendimiento/métodos , Neoplasias Pulmonares/química , Proteínas de Neoplasias/análisis , Procesamiento Postranscripcional del ARN , ARN Mensajero/análisis , ARN Neoplásico/análisis , Proteínas de Unión al ARN/análisis , Análisis de Matrices Tisulares/métodos , Animales , Bancos de Muestras Biológicas , Línea Celular Tumoral , Chlorocebus aethiops , Neoplasias del Colon/patología , Colorantes Fluorescentes , Humanos , Hibridación Fluorescente in Situ , Neoplasias Pulmonares/patología , Ratones , Microscopía Fluorescente , Análisis de la Célula Individual , Organismos Libres de Patógenos Específicos , Células Vero
14.
Nat Biomed Eng ; 3(5): 371-380, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30936432

RESUMEN

Visualization of the spatio-temporal trafficking of vaccines after their delivery would help evaluate the efficacy of candidate formulations and aid their rational design for preclinical and translational studies. Here, we show that a dual radionuclide-near-infrared probe allows for quantitative, longitudinal and non-invasive monitoring, via positron emission tomography-computed tomography and near-infrared imaging of cynomolgus macaques, of the trafficking dynamics to draining lymph nodes of a model messenger RNA vaccine labelled with the probe. After intramuscular administration of the vaccine to the monkeys, we observed the dynamics of the mRNA vaccine at the injection site and in the draining lymph nodes, performed cellular analyses of the involved tissues using flow cytometry and identified through immunofluorescence that professional antigen-presenting cells are the primary cells containing the injected mRNA and encoding the antigen. This approach may reveal spatio-temporal determinants of vaccine efficacy in preclinical and translational studies employing large mammals.


Asunto(s)
Técnicas de Transferencia de Gen , Tomografía Computarizada por Tomografía de Emisión de Positrones , ARN Mensajero/administración & dosificación , Espectroscopía Infrarroja Corta , Vacunas/administración & dosificación , Animales , Células Presentadoras de Antígenos/metabolismo , Radioisótopos de Cobre/química , Células HeLa , Humanos , Ganglios Linfáticos/diagnóstico por imagen , Macaca fascicularis , Masculino , Músculos/metabolismo
15.
J Immunol ; 202(2): 608-617, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30541883

RESUMEN

Therapeutic strategies based on in vitro-transcribed mRNA (IVT) are attractive because they avoid the permanent signature of genomic integration that is associated with DNA-based therapy and result in the transient production of proteins of interest. To date, IVT has mainly been used in vaccination protocols to generate immune responses to foreign Ags. In this "proof-of-principle" study, we explore a strategy of combinatorial IVT to recruit and reprogram immune effector cells to acquire divergent biological functions in mice in vivo. First, we demonstrate that synthetic mRNA encoding CCL3 is able to recruit murine monocytes in a nonprogrammed state, exhibiting neither bactericidal nor tissue-repairing properties. However, upon addition of either Ifn-γ mRNA or Il-4 mRNA, we successfully polarized these cells to adopt either M1 or M2 macrophage activation phenotypes. This cellular reprogramming was demonstrated through increased expression of known surface markers and through the differential modulation of NADPH oxidase activity, or the superoxide burst. Our study demonstrates how IVT strategies can be combined to recruit and reprogram immune effector cells that have the capacity to fulfill complex biological tasks in vivo.


Asunto(s)
Reprogramación Celular , Macrófagos/inmunología , Monocitos/inmunología , ARN Mensajero/inmunología , Animales , Células Cultivadas , Quimiocina CCL2/genética , Quimiocina CCL2/inmunología , Quimiocina CCL3/genética , Células HeLa , Humanos , Interferón gamma/genética , Interleucina-4/genética , Linfocitos/inmunología , Activación de Macrófagos , Ratones , Ratones Endogámicos C57BL , Prueba de Estudio Conceptual , ARN Mensajero/síntesis química , Transcripción Genética
16.
Mol Ther Nucleic Acids ; 14: 52-66, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30579042

RESUMEN

The characterization of innate immune activation is crucial for vaccine and therapeutic development, including RNA-based vaccines, a promising approach. Current measurement methods quantify type I interferon and inflammatory cytokine production, but they do not allow for the isolation of individual pathways, do not provide kinetic activation or spatial information within tissues, and cannot be translated into clinical studies. Here we demonstrated the use of proximity ligation assays (PLAs) to detect pattern recognition receptor (PRR) activation in cells and in tissue samples. First, we validated PLA's sensitivity and specificity using well-characterized soluble agonists. Next, we characterized PRR activation from in vitro-transcribed (IVT) mRNAs, as well as the effect of sequence and base modifications in vitro. Finally, we established the measurement of PRR activation in tissue sections via PLA upon IVT mRNA intramuscular (i.m.) injection in mice. Overall, our results indicate that PLA is a valuable, versatile, and sensitive tool to monitor PRR activation for vaccine, adjuvant, and therapeutic screening.

17.
Proc Natl Acad Sci U S A ; 115(42): E9944-E9952, 2018 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-30275336

RESUMEN

Dysfunctional endothelium causes more disease than any other cell type. Systemically administered RNA delivery to nonliver tissues remains challenging, in large part because there is no high-throughput method to identify nanoparticles that deliver functional mRNA to cells in vivo. Here we report a system capable of simultaneously quantifying how >100 lipid nanoparticles (LNPs) deliver mRNA that is translated into functional protein. Using this system (named FIND), we measured how >250 LNPs delivered mRNA to multiple cell types in vivo and identified 7C2 and 7C3, two LNPs that efficiently deliver siRNA, single-guide RNA (sgRNA), and mRNA to endothelial cells. The 7C3 delivered Cas9 mRNA and sgRNA to splenic endothelial cells as efficiently as hepatocytes, distinguishing it from LNPs that deliver Cas9 mRNA and sgRNA to hepatocytes more than other cell types. These data demonstrate that FIND can identify nanoparticles with novel tropisms in vivo.


Asunto(s)
Sistemas CRISPR-Cas , Células Endoteliales/metabolismo , Edición Génica , Técnicas de Transferencia de Gen , Lípidos/química , Nanopartículas/administración & dosificación , ARN Guía de Kinetoplastida/genética , ARN Mensajero/genética , Animales , Células Cultivadas , Células Endoteliales/citología , Células HEK293 , Hepatocitos/citología , Hepatocitos/metabolismo , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones , Ratones Endogámicos C57BL , Nanopartículas/química , ARN Guía de Kinetoplastida/química , ARN Mensajero/química
18.
Nat Commun ; 9(1): 3999, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30275522

RESUMEN

The lung is a critical prophylaxis target for clinically important infectious agents, including human respiratory syncytial virus (RSV) and influenza. Here, we develop a modular, synthetic mRNA-based approach to express neutralizing antibodies directly in the lung via aerosol, to prevent RSV infections. First, we express palivizumab, which reduces RSV F copies by 90.8%. Second, we express engineered, membrane-anchored palivizumab, which prevents detectable infection in transfected cells, reducing in vitro titer and in vivo RSV F copies by 99.7% and 89.6%, respectively. Finally, we express an anchored or secreted high-affinity, anti-RSV F, camelid antibody (RSV aVHH and sVHH). We demonstrate that RSV aVHH, but not RSV sVHH, significantly inhibits RSV 7 days post transfection, and we show that RSV aVHH is present in the lung for at least 28 days. Overall, our data suggests that expressing membrane-anchored broadly neutralizing antibodies in the lungs could potentially be a promising pulmonary prophylaxis approach.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Antivirales/administración & dosificación , Palivizumab/inmunología , ARN Mensajero/administración & dosificación , Infecciones por Virus Sincitial Respiratorio/prevención & control , Virus Sincitial Respiratorio Humano/inmunología , Animales , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/metabolismo , Antivirales/inmunología , Línea Celular , Membrana Celular/metabolismo , Femenino , Humanos , Pulmón/metabolismo , Ratones , Ratones Endogámicos BALB C , Palivizumab/genética , Palivizumab/metabolismo , Profilaxis Pre-Exposición , ARN Mensajero/genética , ARN Mensajero/inmunología , Infecciones por Virus Sincitial Respiratorio/inmunología , Infecciones por Virus Sincitial Respiratorio/virología , Proteínas Virales de Fusión/inmunología
19.
Bioconjug Chem ; 29(9): 3072-3083, 2018 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-30067354

RESUMEN

In vitro transcribed (IVT) mRNA is an appealing platform for next generation vaccines, as it can be manufactured rapidly at large scale to meet emerging pathogens. However, its performance as a robust vaccine is strengthened by supplemental immune stimulation, which is typically provided by adjuvant formulations that facilitate delivery and stimulate immune responses. Here, we present a strategy for increasing translation of a model IVT mRNA vaccine while simultaneously modulating its immune-stimulatory properties in a programmable fashion, without relying on delivery vehicle formulations. Substitution of uridine with the modified base N1-methylpseudouridine reduces the intrinsic immune stimulation of the IVT mRNA and enhances antigen translation. Tethering adjuvants to naked IVT mRNA through antisense nucleotides boosts the immunostimulatory properties of adjuvants in vitro, without impairing transgene production or adjuvant activity. In vivo, intramuscular injection of tethered IVT mRNA-TLR7 agonists leads to enhanced local immune responses, and to antigen-specific cell-mediated and humoral responses. We believe this system represents a potential platform compatible with any adjuvant of interest to enable specific programmable stimulation of immune responses.


Asunto(s)
Inmunidad Innata/efectos de los fármacos , ARN Mensajero/genética , Vacunas Sintéticas/farmacología , Animales , Formación de Anticuerpos , Inmunidad Celular , Inyecciones Intramusculares , Ratones , Células RAW 264.7 , Transcripción Genética , Vacunas Sintéticas/administración & dosificación
20.
Nano Lett ; 18(3): 2148-2157, 2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29489381

RESUMEN

Endothelial cells and macrophages play active roles in disease and as a result are important targets for nucleic acid therapies. While thousands of chemically distinct lipid nanoparticles (LNPs) can be synthesized to deliver nucleic acids, studying more than a few LNPs in vivo is challenging. As a result, it is difficult to understand how nanoparticles target these cells in vivo. Using high throughput LNP barcoding, we quantified how well LNPs delivered DNA barcodes to endothelial cells and macrophages in vitro, as well as endothelial cells and macrophages isolated from the lung, heart, and bone marrow in vivo. We focused on two fundamental questions in drug delivery. First, does in vitro LNP delivery predict in vivo LNP delivery? By comparing how 281 LNPs delivered barcodes to endothelial cells and macrophages in vitro and in vivo, we found in vitro delivery did not predict in vivo delivery. Second, does LNP delivery change within the microenvironment of a tissue? We quantified how 85 LNPs delivered barcodes to eight splenic cell populations, and found that cell types derived from myeloid progenitors tended to be targeted by similar LNPs, relative to cell types derived from lymphoid progenitors. These data demonstrate that barcoded LNPs can elucidate fundamental questions about in vivo nanoparticle delivery.


Asunto(s)
Sistemas de Liberación de Medicamentos , Lípidos/química , Nanopartículas/química , Ácidos Nucleicos/administración & dosificación , Animales , Línea Celular , Células Cultivadas , Células Endoteliales/metabolismo , Femenino , Humanos , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Nanotecnología , Ácidos Nucleicos/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...