Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 16(2): 180, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26840320

RESUMEN

This paper describes, for the first time, the procedure for the full design, calibration, uncertainty analysis, and practical application of a personal, distributed exposimeter (PDE) for the detection of personal exposure in the Global System for Mobile Communications (GSM) downlink (DL) band around 900 MHz (GSM 900 DL). The PDE is a sensor that consists of several body-worn antennas. The on-body location of these antennas is investigated using numerical simulations and calibration measurements in an anechoic chamber. The calibration measurements and the simulations result in a design (or on-body setup) of the PDE. This is used for validation measurements and indoor radio frequency (RF) exposure measurements in Ghent, Belgium. The main achievements of this paper are: first, the demonstration, using both measurements and simulations, that a PDE consisting of multiple on-body textile antennas will have a lower measurement uncertainty for personal RF exposure than existing on-body sensors; second, a validation of the PDE, which proves that the device correctly estimates the incident power densities; and third, a demonstration of the usability of the PDE for real exposure assessment measurements. To this aim, the validated PDE is used for indoor measurements in a residential building in Ghent, Belgium, which yield an average incident power density of 0.018 mW/m².

2.
Sensors (Basel) ; 14(10): 18583-610, 2014 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-25302808

RESUMEN

A novel, fully-autonomous, wearable, wireless sensor network is presented, where each flexible textile node performs cooperative synchronous acquisition and distributed event detection. Computationally efficient situational-awareness algorithms are implemented on the low-power microcontroller present on each flexible node. The detected events are wirelessly transmitted to a base station, directly, as well as forwarded by other on-body nodes. For each node, a dual-polarized textile patch antenna serves as a platform for the flexible electronic circuitry. Therefore, the system is particularly suitable for comfortable and unobtrusive integration into garments. In the meantime, polarization diversity can be exploited to improve the reliability and energy-efficiency of the wireless transmission. Extensive experiments in realistic conditions have demonstrated that this new autonomous, body-centric, textile-antenna, wireless sensor network is able to correctly detect different operating conditions of a firefighter during an intervention. By relying on four network nodes integrated into the protective garment, this functionality is implemented locally, on the body, and in real time. In addition, the received sensor data are reliably transferred to a central access point at the command post, for more detailed and more comprehensive real-time visualization. This information provides coordinators and commanders with situational awareness of the entire rescue operation. A statistical analysis of measured on-body node-to-node, as well as off-body person-to-person channels is included, confirming the reliability of the communication system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA