Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 134(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557491

RESUMEN

Mutations in genes encoding chromatin modifiers are enriched among mutations causing intellectual disability. The continuing development of the brain postnatally, coupled with the inherent reversibility of chromatin modifications, may afford an opportunity for therapeutic intervention following a genetic diagnosis. Development of treatments requires an understanding of protein function and models of the disease. Here, we provide a mouse model of Say-Barber-Biesecker-Young-Simpson syndrome (SBBYSS) (OMIM 603736) and demonstrate proof-of-principle efficacy of postnatal treatment. SBBYSS results from heterozygous mutations in the KAT6B (MYST4/MORF/QFK) gene and is characterized by intellectual disability and autism-like behaviors. Using human cells carrying SBBYSS-specific KAT6B mutations and Kat6b heterozygous mice (Kat6b+/-), we showed that KAT6B deficiency caused a reduction in histone H3 lysine 9 acetylation. Kat6b+/- mice displayed learning, memory, and social deficits, mirroring SBBYSS individuals. Treatment with a histone deacetylase inhibitor, valproic acid, or an acetyl donor, acetyl-carnitine (ALCAR), elevated histone acetylation levels in the human cells with SBBYSS mutations and in brain and blood cells of Kat6b+/- mice and partially reversed gene expression changes in Kat6b+/- cortical neurons. Both compounds improved sociability in Kat6b+/- mice, and ALCAR treatment restored learning and memory. These data suggest that a subset of SBBYSS individuals may benefit from postnatal therapeutic interventions.


Asunto(s)
Anomalías Múltiples , Acetilcarnitina , Hipotiroidismo Congénito , Anomalías Craneofaciales , Histona Acetiltransferasas , Discapacidad Intelectual , Inestabilidad de la Articulación , Animales , Humanos , Ratones , Anomalías Múltiples/tratamiento farmacológico , Anomalías Múltiples/genética , Acetilación , Acetilcarnitina/farmacología , Acetilcarnitina/uso terapéutico , Blefarofimosis , Cromatina , Anomalías Craneofaciales/tratamiento farmacológico , Anomalías Craneofaciales/genética , Exones , Facies , Cardiopatías Congénitas , Histona Acetiltransferasas/antagonistas & inhibidores , Histona Acetiltransferasas/genética , Histona Acetiltransferasas/metabolismo , Histonas/genética , Discapacidad Intelectual/tratamiento farmacológico , Discapacidad Intelectual/genética
2.
Development ; 151(5)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38446206

RESUMEN

Inhibitor of growth 4 and 5 (ING4, ING5) are structurally similar chromatin-binding proteins in the KAT6A, KAT6B and KAT7 histone acetyltransferase protein complexes. Heterozygous mutations in the KAT6A or KAT6B gene cause human disorders with cardiac defects, but the contribution of their chromatin-adaptor proteins to development is unknown. We found that Ing5-/- mice had isolated cardiac ventricular septal defects. Ing4-/-Ing5-/- embryos failed to undergo chorioallantoic fusion and arrested in development at embryonic day 8.5, displaying loss of histone H3 lysine 14 acetylation, reduction in H3 lysine 23 acetylation levels and reduced developmental gene expression. Embryonic day 12.5 Ing4+/-Ing5-/- hearts showed a paucity of epicardial cells and epicardium-derived cells, failure of myocardium compaction, and coronary vasculature defects, accompanied by reduced expression of epicardium genes. Cell adhesion gene expression and proepicardium outgrowth were defective in the ING4- and ING5-deficient state. Our findings suggest that ING4 and ING5 are essential for heart development and promote epicardium and epicardium-derived cell fates and imply mutation of the human ING5 gene as a possible cause of isolated ventricular septal defects.


Asunto(s)
Proteínas Portadoras , Defectos del Tabique Interventricular , Lisina , Humanos , Animales , Ratones , Linaje de la Célula , Histonas , Acetilación , Cromatina , Factores de Transcripción , Proteínas Supresoras de Tumor , Proteínas de Homeodominio/genética , Proteínas de Ciclo Celular , Histona Acetiltransferasas
3.
Front Immunol ; 14: 1119750, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37275850

RESUMEN

ING5 is a component of KAT6A and KAT7 histone lysine acetylation protein complexes. ING5 contains a PHD domain that binds to histone H3 lysine 4 when it is trimethylated, and so functions as a 'reader' and adaptor protein. KAT6A and KAT7 function are critical for normal hematopoiesis. To examine the function of ING5 in hematopoiesis, we generated a null allele of Ing5. Mice lacking ING5 during development had decreased foetal liver cellularity, decreased numbers of hematopoietic stem cells and perturbed erythropoiesis compared to wild-type control mice. Ing5-/- pups had hypoplastic spleens. Competitive transplantation experiments using foetal liver hematopoietic cells showed that there was no defect in long-term repopulating capacity of stem cells lacking ING5, suggesting that the defects during the foetal stage were not cell intrinsic. Together, these results suggest that ING5 function is dispensable for normal hematopoiesis but may be required for timely foetal hematopoiesis in a cell-extrinsic manner.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Factores de Transcripción , Proteínas Supresoras de Tumor , Animales , Ratones , Recuento de Células , Cromatina/genética , Hígado , Lisina , Proteínas Supresoras de Tumor/genética , Factores de Transcripción/genética
4.
Development ; 147(21)2020 11 12.
Artículo en Inglés | MEDLINE | ID: mdl-32994166

RESUMEN

The Hippo-YAP/TAZ pathway is an important regulator of tissue growth, but can also control cell fate or tissue morphogenesis. Here, we investigate the function of the Hippo pathway during the development of cartilage, which forms the majority of the skeleton. Previously, YAP was proposed to inhibit skeletal size by repressing chondrocyte proliferation and differentiation. We find that, in vitro, Yap/Taz double knockout impairs murine chondrocyte proliferation, whereas constitutively nuclear nls-YAP5SA accelerates proliferation, in line with the canonical role of this pathway in most tissues. However, in vivo, cartilage-specific knockout of Yap/Taz does not prevent chondrocyte proliferation, differentiation or skeletal growth, but rather results in various skeletal deformities including cleft palate. Cartilage-specific expression of nls-YAP5SA or knockout of Lats1/2 do not increase cartilage growth, but instead lead to catastrophic malformations resembling chondrodysplasia or achondrogenesis. Physiological YAP target genes in cartilage include Ctgf, Cyr61 and several matrix remodelling enzymes. Thus, YAP/TAZ activity controls chondrocyte proliferation in vitro, possibly reflecting a regenerative response, but is dispensable for chondrocyte proliferation in vivo, and instead functions to control cartilage morphogenesis via regulation of the extracellular matrix.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Huesos/embriología , Huesos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Morfogénesis , Proteínas Serina-Treonina Quinasas/metabolismo , Transactivadores/metabolismo , Animales , Huesos/anomalías , Huesos/patología , Cartílago/patología , Núcleo Celular/metabolismo , Proliferación Celular , Condrocitos/metabolismo , Condrocitos/patología , Fisura del Paladar/patología , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Regulación del Desarrollo de la Expresión Génica , Placa de Crecimiento/patología , Vía de Señalización Hippo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Morfogénesis/genética , Transducción de Señal , Proteínas Supresoras de Tumor/metabolismo , Proteínas Señalizadoras YAP
5.
Cell Chem Biol ; 27(5): 499-510.e7, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32053779

RESUMEN

G protein-coupled receptors are a major class of membrane receptors that mediate physiological and pathophysiological cellular signaling. Many aspects of receptor activation and signaling can be investigated using genetically encoded luminescent fusion proteins. However, the use of these biosensors in live cell systems requires the exogenous expression of the tagged protein of interest. To maintain the normal cellular context here we use CRISPR/Cas9-mediated homology-directed repair to insert luminescent tags into the endogenous genome. Using NanoLuc and bioluminescence resonance energy transfer we demonstrate fluorescent ligand binding at genome-edited chemokine receptors. We also demonstrate that split-NanoLuc complementation can be used to investigate conformational changes and internalization of CXCR4 and that recruitment of ß-arrestin2 to CXCR4 can be monitored when both proteins are natively expressed. These results show that genetically encoded luminescent biosensors can be used to investigate numerous aspects of receptor function at native expression levels.


Asunto(s)
Transferencia de Energía por Resonancia de Bioluminiscencia , Sistemas CRISPR-Cas , Edición Génica , Receptores CXCR4/metabolismo , Receptores CXCR/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Células HEK293 , Humanos , Ligandos , Luciferasas/análisis , Luciferasas/genética , Luciferasas/metabolismo , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Unión Proteica , Conformación Proteica , Receptores CXCR/análisis , Receptores CXCR/genética , Receptores CXCR4/análisis , Receptores CXCR4/genética , beta-Arrestinas/análisis , beta-Arrestinas/genética , beta-Arrestinas/metabolismo
6.
Development ; 146(14)2019 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-31340933

RESUMEN

Oral clefts are common birth defects. Individuals with oral clefts who have identical genetic mutations regularly present with variable penetrance and severity. Epigenetic or chromatin-mediated mechanisms are commonly invoked to explain variable penetrance. However, specific examples of these are rare. Two functional copies of the MOZ (KAT6A, MYST3) gene, encoding a MYST family lysine acetyltransferase chromatin regulator, are essential for human craniofacial development, but the molecular role of MOZ in this context is unclear. Using genetic interaction and genomic studies, we have investigated the effects of loss of MOZ on the gene expression program during mouse development. Among the more than 500 genes differentially expressed after loss of MOZ, 19 genes had previously been associated with cleft palates. These included four distal-less homeobox (DLX) transcription factor-encoding genes, Dlx1, Dlx2, Dlx3 and Dlx5 and DLX target genes (including Barx1, Gbx2, Osr2 and Sim2). MOZ occupied the Dlx5 locus and was required for normal levels of histone H3 lysine 9 acetylation. MOZ affected Dlx gene expression cell-autonomously within neural crest cells. Our study identifies a specific program by which the chromatin modifier MOZ regulates craniofacial development.


Asunto(s)
Huesos Faciales/embriología , Proteínas de Homeodominio/genética , Desarrollo Maxilofacial/genética , Cráneo/embriología , Factores de Transcripción/genética , Animales , Desarrollo Óseo/genética , Células Cultivadas , Embrión de Mamíferos , Huesos Faciales/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox , Histona Acetiltransferasas , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Embarazo , Cráneo/metabolismo
7.
PLoS One ; 14(1): e0208604, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30629584

RESUMEN

Our aim was to develop a widely available educational program in which students conducted authentic research that met the expectations of both the scientific and educational communities. This paper describes the development and implementation of a citizen science project based on DNA barcoding of reptile specimens obtained from the Museums Victoria frozen tissue collection. The student program was run by the Gene Technology Access Centre (GTAC) and was delivered as a "one day plus one lesson" format incorporating a one-day wet laboratory workshop followed by a single lesson at school utilising online bioinformatics tools. The project leveraged the complementary resources and expertise of the research and educational partners to generate robust scientific data that could be analysed with confidence, meet the requirements of the Victorian state education curriculum, and provide participating students with an enhanced learning experience. During two 1-week stints in 2013 and 2014, 406 students mentored by 44 postgraduate university students participated in the project. Students worked mainly in pairs to process ~200 tissue samples cut from 53 curated reptile specimens representing 17 species. A total of 27 novel Cytochrome Oxidase subunit 1 (CO1) sequences were ultimately generated for 8 south-east Australian reptile species of the families Scincidae and Agamidae.


Asunto(s)
Código de Barras del ADN Taxonómico , Modelos Educacionales , Ciencia , Animales , Australia , Secuencia de Bases , Retroalimentación , Variación Genética , Mitocondrias/genética , Filogenia , Reptiles/clasificación , Reptiles/genética , Especificidad de la Especie , Estudiantes
8.
Cell Rep ; 24(12): 3285-3295.e4, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30232009

RESUMEN

Apoptotic cell death removes unwanted cells and is regulated by interactions between pro-survival and pro-apoptotic members of the BCL-2 protein family. The regulation of apoptosis is thought to be crucial for normal embryonic development. Accordingly, complete loss of pro-survival MCL-1 or BCL-XL (BCL2L1) causes embryonic lethality. However, it is not known whether minor reductions in pro-survival proteins could cause developmental abnormalities. We explored the rate-limiting roles of MCL-1 and BCL-XL in development and show that combined loss of single alleles of Mcl-1 and Bcl-x causes neonatal lethality. Mcl-1+/-;Bcl-x+/- mice display craniofacial anomalies, but additional loss of a single allele of pro-apoptotic Bim (Bcl2l11) restores normal development. These findings demonstrate that the control of cell survival during embryogenesis is finely balanced and suggest that some human craniofacial defects, for which causes are currently unknown, may be due to subtle imbalances between pro-survival and pro-apoptotic BCL-2 family members.


Asunto(s)
Proteína 11 Similar a Bcl2/genética , Anomalías Craneofaciales/genética , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/genética , Proteína bcl-X/genética , Animales , Apoptosis , Proteína 11 Similar a Bcl2/metabolismo , Células Cultivadas , Femenino , Heterocigoto , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteína bcl-X/metabolismo
9.
Nature ; 560(7717): 253-257, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30069049

RESUMEN

Acetylation of histones by lysine acetyltransferases (KATs) is essential for chromatin organization and function1. Among the genes coding for the MYST family of KATs (KAT5-KAT8) are the oncogenes KAT6A (also known as MOZ) and KAT6B (also known as MORF and QKF)2,3. KAT6A has essential roles in normal haematopoietic stem cells4-6 and is the target of recurrent chromosomal translocations, causing acute myeloid leukaemia7,8. Similarly, chromosomal translocations in KAT6B have been identified in diverse cancers8. KAT6A suppresses cellular senescence through the regulation of suppressors of the CDKN2A locus9,10, a function that requires its KAT activity10. Loss of one allele of KAT6A extends the median survival of mice with MYC-induced lymphoma from 105 to 413 days11. These findings suggest that inhibition of KAT6A and KAT6B may provide a therapeutic benefit in cancer. Here we present highly potent, selective inhibitors of KAT6A and KAT6B, denoted WM-8014 and WM-1119. Biochemical and structural studies demonstrate that these compounds are reversible competitors of acetyl coenzyme A and inhibit MYST-catalysed histone acetylation. WM-8014 and WM-1119 induce cell cycle exit and cellular senescence without causing DNA damage. Senescence is INK4A/ARF-dependent and is accompanied by changes in gene expression that are typical of loss of KAT6A function. WM-8014 potentiates oncogene-induced senescence in vitro and in a zebrafish model of hepatocellular carcinoma. WM-1119, which has increased bioavailability, arrests the progression of lymphoma in mice. We anticipate that this class of inhibitors will help to accelerate the development of therapeutics that target gene transcription regulated by histone acetylation.


Asunto(s)
Bencenosulfonatos/farmacología , Senescencia Celular/efectos de los fármacos , Histona Acetiltransferasas/antagonistas & inhibidores , Hidrazinas/farmacología , Linfoma/tratamiento farmacológico , Linfoma/patología , Sulfonamidas/farmacología , Acetilación/efectos de los fármacos , Animales , Bencenosulfonatos/uso terapéutico , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Desarrollo de Medicamentos , Fibroblastos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Histona Acetiltransferasas/deficiencia , Histona Acetiltransferasas/genética , Histonas/química , Histonas/metabolismo , Hidrazinas/uso terapéutico , Linfoma/enzimología , Linfoma/genética , Lisina/química , Lisina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Sulfonamidas/uso terapéutico
10.
Cell ; 173(5): 1217-1230.e17, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29775594

RESUMEN

Intrinsic apoptosis, reliant on BAX and BAK, has been postulated to be fundamental for morphogenesis, but its precise contribution to this process has not been fully explored in mammals. Our structural analysis of BOK suggests close resemblance to BAX and BAK structures. Notably, Bok-/-Bax-/-Bak-/- animals exhibited more severe defects and died earlier than Bax-/-Bak-/- mice, implying that BOK has overlapping roles with BAX and BAK during developmental cell death. By analyzing Bok-/-Bax-/-Bak-/- triple-knockout mice whose cells are incapable of undergoing intrinsic apoptosis, we identified tissues that formed well without this process. We provide evidence that necroptosis, pyroptosis, or autophagy does not substantially substitute for the loss of apoptosis. Albeit very rare, unexpected attainment of adult Bok-/-Bax-/-Bak-/- mice suggests that morphogenesis can proceed entirely without apoptosis mediated by these proteins and possibly without cell death in general.


Asunto(s)
Apoptosis , Embrión de Mamíferos/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteína Destructora del Antagonista Homólogo bcl-2/genética , Proteína X Asociada a bcl-2/genética , Anomalías Múltiples/patología , Anomalías Múltiples/veterinaria , Animales , Embrión de Mamíferos/anatomía & histología , Embrión de Mamíferos/patología , Desarrollo Embrionario/genética , Feto/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteína Destructora del Antagonista Homólogo bcl-2/metabolismo , Proteína X Asociada a bcl-2/metabolismo
11.
Sci Rep ; 7(1): 3187, 2017 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-28600500

RESUMEN

Bioluminescence resonance energy transfer (BRET) has been a vital tool for understanding G protein-coupled receptor (GPCR) function. It has been used to investigate GPCR-protein and/or -ligand interactions as well as GPCR oligomerisation. However the utility of BRET is limited by the requirement that the fusion proteins, and in particular the donor, need to be exogenously expressed. To address this, we have used CRISPR/Cas9-mediated homology-directed repair to generate protein-Nanoluciferase (Nluc) fusions under endogenous promotion, thus allowing investigation of proximity between the genome-edited protein and an exogenously expressed protein by BRET. Here we report BRET monitoring of GPCR-mediated ß-arrestin2 recruitment and internalisation where the donor luciferase was under endogenous promotion, in live cells and in real time. We have investigated the utility of CRISPR/Cas9 genome editing to create genome-edited fusion proteins that can be used as BRET donors and propose that this strategy can be used to overcome the need for exogenous donor expression.


Asunto(s)
Sistemas CRISPR-Cas/genética , Transferencia de Energía/genética , Luciferasas/química , beta-Arrestinas/genética , Edición Génica , Humanos , Ligandos , Luciferasas/genética , Nanopartículas/química , Unión Proteica , Proteínas/química , Proteínas/genética , Transducción de Señal/genética , beta-Arrestinas/química
12.
Cell Rep ; 15(10): 2251-2265, 2016 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-27239039

RESUMEN

Disruptions to neuronal mRNA translation are hypothesized to underlie human neurodevelopmental syndromes. Notably, the mRNA translation re-initiation factor DENR is a regulator of eukaryotic translation and cell growth, but its mammalian functions are unknown. Here, we report that Denr influences the migration of murine cerebral cortical neurons in vivo with its binding partner Mcts1, whereas perturbations to Denr impair the long-term positioning, dendritic arborization, and dendritic spine characteristics of postnatal projection neurons. We characterized de novo missense mutations in DENR (p.C37Y and p.P121L) detected in two unrelated human subjects diagnosed with brain developmental disorder to find that each variant impairs the function of DENR in mRNA translation re-initiation and disrupts the migration and terminal branching of cortical neurons in different ways. Thus, our findings link human brain disorders to impaired mRNA translation re-initiation through perturbations in DENR (OMIM: 604550) function in neurons.


Asunto(s)
Factores Eucarióticos de Iniciación/genética , Mutación/genética , Enfermedades del Sistema Nervioso/congénito , Enfermedades del Sistema Nervioso/genética , Neurogénesis/genética , Neuronas/metabolismo , Iniciación de la Cadena Peptídica Traduccional/genética , Animales , Diferenciación Celular , Movimiento Celular , Corteza Cerebral/embriología , Corteza Cerebral/patología , Técnicas de Silenciamiento del Gen , Humanos , Ratones Endogámicos C57BL , Proteínas Mutantes/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
13.
Dev Biol ; 403(1): 22-9, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25912687

RESUMEN

Ventricular septal defects (VSDs) are the most commonly occurring congenital heart defect. They are regularly associated with complex syndromes, including DiGeorge syndrome and Holt-Oram syndrome, which are characterised by haploinsufficiency for the T-box transcription factors TBX1 and TBX5, respectively. The histone acetyltransferase monocytic leukaemia zinc finger protein, MOZ (MYST3/KAT6A), is required for the expression of the Tbx1 and Tbx5 genes. Homozygous loss of MOZ results in DiGeorge syndrome-like defects including VSD. The Moz gene is expressed in the ectodermal, mesodermal and endodermal aspects of the developing pharyngeal apparatus and heart; however it is unclear in which of these tissues MOZ is required for heart development. The role of MOZ in the activation of Tbx1 would suggest a requirement for MOZ in the mesoderm, because deletion of Tbx1 in the mesoderm causes VSDs. Here, we investigated the tissue-specific requirements for MOZ in the mesoderm. We demonstrate that Mesp1-cre-mediated deletion of Moz results in high penetrance of VSDs and overriding aorta and a significant decrease in MOZ-dependant Tbx1 and Tbx5 expression. Together, our data suggest that the molecular pathogenesis of VSDs in Moz germline mutant mice is due to loss of MOZ-dependant activation of mesodermal Tbx1 and Tbx5 expression.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Defectos del Tabique Interventricular/genética , Tabiques Cardíacos/embriología , Histona Acetiltransferasas/metabolismo , Proteínas de Dominio T Box/genética , Animales , Síndrome de DiGeorge/genética , Corazón/embriología , Tabiques Cardíacos/citología , Histona Acetiltransferasas/genética , Mesodermo/embriología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Organogénesis/genética
14.
Proc Natl Acad Sci U S A ; 112(17): 5437-42, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25922517

RESUMEN

Hox genes underlie the specification of body segment identity in the anterior-posterior axis. They are activated during gastrulation and undergo a dynamic shift from a transcriptionally repressed to an active chromatin state in a sequence that reflects their chromosomal location. Nevertheless, the precise role of chromatin modifying complexes during the initial activation phase remains unclear. In the current study, we examined the role of chromatin regulators during Hox gene activation. Using embryonic stem cell lines lacking the transcriptional activator MOZ and the polycomb-family repressor BMI1, we showed that MOZ and BMI1, respectively, promoted and repressed Hox genes during the shift from the transcriptionally repressed to the active state. Strikingly however, MOZ but not BMI1 was required to regulate Hox mRNA levels after the initial activation phase. To determine the interaction of MOZ and BMI1 in vivo, we interrogated their role in regulating Hox genes and body segment identity using Moz;Bmi1 double deficient mice. We found that the homeotic transformations and shifts in Hox gene expression boundaries observed in single Moz and Bmi1 mutant mice were rescued to a wild type identity in Moz;Bmi1 double knockout animals. Together, our findings establish that MOZ and BMI1 play opposing roles during the onset of Hox gene expression in the ES cell model and during body segment identity specification in vivo. We propose that chromatin-modifying complexes have a previously unappreciated role during the initiation phase of Hox gene expression, which is critical for the correct specification of body segment identity.


Asunto(s)
Tipificación del Cuerpo/fisiología , Embrión de Mamíferos/embriología , Células Madre Embrionarias/metabolismo , Histona Acetiltransferasas/metabolismo , Proteínas de Homeodominio/biosíntesis , Complejo Represivo Polycomb 1/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Animales , Embrión de Mamíferos/citología , Células Madre Embrionarias/citología , Regulación del Desarrollo de la Expresión Génica/fisiología , Histona Acetiltransferasas/genética , Proteínas de Homeodominio/genética , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Complejo Represivo Polycomb 1/genética , Proteínas Proto-Oncogénicas/genética
15.
Blood ; 125(12): 1910-21, 2015 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-25605372

RESUMEN

The histone acetyltransferase MOZ (MYST3, KAT6A) is the target of recurrent chromosomal translocations fusing the MOZ gene to CBP, p300, NCOA3, or TIF2 in particularly aggressive cases of acute myeloid leukemia. In this study, we report the role of wild-type MOZ in regulating B-cell progenitor proliferation and hematopoietic malignancy. In the Eµ-Myc model of aggressive pre-B/B-cell lymphoma, the loss of just one allele of Moz increased the median survival of mice by 3.9-fold. MOZ was required to maintain the proliferative capacity of B-cell progenitors, even in the presence of c-MYC overexpression, by directly maintaining the transcriptional activity of genes required for normal B-cell development. Hence, B-cell progenitor numbers were significantly reduced in Moz haploinsufficient animals. Interestingly, we find a significant overlap in genes regulated by MOZ, mixed lineage leukemia 1, and mixed lineage leukemia 1 cofactor menin. This includes Meis1, a TALE class homeobox transcription factor required for B-cell development, characteristically upregulated as a result of MLL1 translocations in leukemia. We demonstrate that MOZ localizes to the Meis1 locus in pre-B-cells and maintains Meis1 expression. Our results suggest that even partial inhibition of MOZ may reduce the proliferative capacity of MEIS1, and HOX-driven lymphoma and leukemia cells.


Asunto(s)
Linfocitos B/citología , Regulación Neoplásica de la Expresión Génica , Histona Acetiltransferasas/genética , Linfoma/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Células Madre/citología , Alelos , Animales , Diferenciación Celular , Supervivencia Celular , Células Cultivadas , Senescencia Celular , Femenino , Haploinsuficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Análisis de Secuencia de ARN , Transcripción Genética
16.
Dev Cell ; 23(3): 652-63, 2012 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-22921202

RESUMEN

DiGeorge syndrome, caused by a 22q11 microdeletion or mutation of the TBX1 gene, varies in severity greatly, even among monozygotic twins. Epigenetic phenomena have been invoked to explain phenotypic differences in individuals of identical genetic composition, although specific chromatin modifications relevant to DiGeorge syndrome are elusive. Here we show that lack of the histone acetyltransferase MOZ (MYST3/KAT6A) phenocopies DiGeorge syndrome, and the MOZ complex occupies the Tbx1 locus, promoting its expression and histone 3 lysine 9 acetylation. Importantly, DiGeorge syndrome-like anomalies are present in mice with homozygous mutation of Moz and in heterozygous Moz mutants when combined with Tbx1 haploinsufficiency or oversupply of retinoic acid. Conversely, a Tbx1 transgene rescues the heart phenotype in Moz mutants. Our data reveal a molecular mechanism for a specific chromatin modification of the Tbx1 locus intersecting with an environmental determinant, modeling variability in DiGeorge syndrome.


Asunto(s)
Síndrome de DiGeorge/genética , Síndrome de DiGeorge/metabolismo , Histona Acetiltransferasas/metabolismo , Proteínas de Dominio T Box/metabolismo , Animales , Histona Acetiltransferasas/deficiencia , Histona Acetiltransferasas/genética , Ratones , Ratones Endogámicos , Ratones Transgénicos , Mutación , Fenotipo , Proteínas de Dominio T Box/deficiencia , Proteínas de Dominio T Box/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...