Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Data ; 11(1): 374, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609389

RESUMEN

The determination of changes in soil organic carbon (SOC) content under different cropping systems is necessary for policy development oriented towards soil conservation, C sequestration, and future C credit markets. The aim of this study was to generate an open SOC dataset resulting from a systematic literature search related to the agricultural systems for Southeast Asia. The dataset has 209 articles and 4341 observations on soils of cropping systems in this region from articles published between 1987 and 2023. This dataset included different management practices, land uses, soil sampling depth, and length of SOC content assessment. In addition, inherent features of crop production reported in the experiments were included in the dataset. This dataset can be applied to quantify and compare the impact of different land uses or management practices on SOC content, providing foundational knowledge towards identifying sustainable practices. Lastly, it is a useful guide for future regional SOC sequestration policies and the development of C credit markets.

2.
Genes (Basel) ; 14(12)2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38136999

RESUMEN

Weeds can negatively impact crop yields and the ecosystem's health. While many weed management strategies have been developed and deployed, there is a greater need for the development of sustainable methods for employing integrated weed management. Gene drive systems can be used as one of the approaches to suppress the aggressive growth and reproductive behavior of weeds, although their efficacy is yet to be tested. Their popularity in insect pest management has increased, however, with the advent of CRISPR-Cas9 technology, which provides specificity and precision in editing the target gene. This review focuses on the different types of gene drive systems, including the use of CRISPR-Cas9-based systems and their success stories in pest management, while also exploring their possible applications in weed species. Factors that govern the success of a gene drive system in weeds, including the mode of reproduction, the availability of weed genome databases, and well-established transformation protocols are also discussed. Importantly, the risks associated with the release of weed populations with gene drive-bearing alleles into wild populations are also examined, along with the importance of addressing ecological consequences and ethical concerns.


Asunto(s)
Sistemas CRISPR-Cas , Tecnología de Genética Dirigida , Tecnología de Genética Dirigida/métodos , Ecosistema , Control de Malezas/métodos , Malezas/genética
3.
Sci Rep ; 12(1): 17128, 2022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36224236

RESUMEN

Increased soybean (Glycine max L. Merril) seed costs have motivated interest in reduced seeding rates to improve profitability while maintaining or increasing yield. However, little is known about the effect of early-season plant-to-plant spatial uniformity on the yield of modern soybean varieties planted at reduced seeding rates. The objectives of this study were to (i) investigate traditional and devise new metrics for characterizing early-season plant-to-plant spatial uniformity, (ii) identify the best metrics correlating plant-to-plant spatial uniformity and soybean yield, and (iii) evaluate those metrics at different seeding rate (and achieved plant density) levels and yield environments. Soybean trials planted in 2019 and 2020 compared seeding rates of 160, 215, 270, and 321 thousand seeds ha-1 planted with two different planters, Max Emerge and Exact Emerge, in rainfed and irrigated conditions in the United States (US). In addition, trials comparing seeding rates of 100, 230, 360, and 550 thousand seeds ha-1 were conducted in Argentina (Arg) in 2019 and 2020. Achieved plant density, grain yield, and early-season plant-to-plant spacing (and calculated metrics) were measured in all trials. All site-years were separated into low- (2.7 Mg ha-1), medium- (3 Mg ha-1), and high- (4.3 Mg ha-1) yielding environments, and the tested seeding rates were separated into low (< 200 seeds m-2), medium (200-300 seeds m-2), and high (> 300 seeds m-2) levels. Out of the 13 metrics of spatial uniformity, standard deviation (sd) of spacing and of achieved versus targeted evenness index (herein termed as ATEI, observed to theoretical ratio of plant spacing) showed the greatest correlation with soybean yield in US trials (R2 = 0.26 and 0.32, respectively). However, only the ATEI sd, with increases denoting less uniform spacing, exhibited a consistent relationship with yield in both US and Arg trials. The effect of spatial uniformity (ATEI sd) on soybean yield differed by yield environment. Increases in ATEI sd (values > 1) negatively impacted soybean yields in both low- and medium-yield environments, and in achieved plant densities below 200 thousand plants ha-1. High-yielding environments were unaffected by variations in spatial uniformity and plant density levels. Our study provides new insights into the effect of early-season plant-to-plant spatial uniformity on soybean yields, as influenced by yield environments and reduced plant densities.


Asunto(s)
Glycine max , Semillas , Argentina , Estaciones del Año
4.
Int J Mol Sci ; 22(13)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34281180

RESUMEN

The sugarcane aphid, Melanaphis sacchari (Zehntner) (Hemiptera: Aphididae) (SCA), has become a major pest of grain sorghum since its appearance in the USA. Several grain sorghum parental lines are moderately resistant to the SCA. However, the molecular and genetic mechanisms underlying this resistance are poorly understood, which has constrained breeding for improved resistance. RNA-Seq was used to conduct transcriptomics analysis on a moderately resistant genotype (TAM428) and a susceptible genotype (Tx2737) to elucidate the molecular mechanisms underlying resistance. Differential expression analysis revealed differences in transcriptomic profile between the two genotypes at multiple time points after infestation by SCA. Six gene clusters had differential expression during SCA infestation. Gene ontology enrichment and cluster analysis of genes differentially expressed after SCA infestation revealed consistent upregulation of genes controlling protein and lipid binding, cellular catabolic processes, transcription initiation, and autophagy in the resistant genotype. Genes regulating responses to external stimuli and stress, cell communication, and transferase activities, were all upregulated in later stages of infestation. On the other hand, expression of genes controlling cell cycle and nuclear division were reduced after SCA infestation in the resistant genotype. These results indicate that different classes of genes, including stress response genes and transcription factors, are responsible for countering the physiological effects of SCA infestation in resistant sorghum plants.


Asunto(s)
Áfidos/fisiología , Defensa de la Planta contra la Herbivoria/genética , Sorghum/genética , Animales , Susceptibilidad a Enfermedades , Grano Comestible/genética , Expresión Génica , Perfilación de la Expresión Génica/métodos , Ontología de Genes , Genotipo , Control Biológico de Vectores/métodos , Fitomejoramiento/métodos , Sorghum/parasitología , Transcriptoma
5.
Front Plant Sci ; 11: 54, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32194579

RESUMEN

Wheat (Triticum aestivum L.) grain yield response to plant density is inconsistent, and the mechanisms driving this response are unclear. A better understanding of the factors governing this relationship could improve plant density recommendations according to specific environmental and genetics characteristics. Therefore, the aims of this paper were to: i) execute a synthesis-analysis of existing literature related to yield-plant density relationship to provide an indication of the need for different agronomic optimum plant density (AOPD) in different yield environments (YEs), and ii) explore a data set of field research studies conducted in Kansas (USA) on yield response to plant density to determine the AOPD at different YEs, evaluate the effect of tillering potential (TP) on the AOPD, and explain changes in AOPD via variations in wheat yield components. Major findings of this study are: i) the synthesis-analysis portrayed new insights of differences in AOPD at varying YEs, reducing the AOPD as the attainable yield increases (with AOPD moving from 397 pl m-2 for the low YE to 191 pl m-2 for the high YE); ii) the field dataset confirmed the trend observed in the synthesis-analysis but expanded on the physiological mechanisms underpinning the yield response to plant density for wheat, mainly highlighting the following points: a) high TP reduces the AOPD mainly in high and low YEs, b) at canopy-scale, both final number of heads and kernels per square meter were the main factors improving yield response to plant density under high TP, c) under varying YEs, at per-plant-scale, a compensation between heads per plant and kernels per head was the main factor contributing to yield with different TP.

6.
Plant Cell Environ ; 42(1): 198-211, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-29744880

RESUMEN

Terminal droughts, along with high temperatures, are becoming more frequent to strongly influence the seed development in cool-season pulses like lentil. In the present study, the lentil plants growing outdoors under natural environment were subjected to following treatments at the time of seed filling till maturity: (a) 28/23 °C day/night temperature as controls; (b) drought stressed, plants maintained at 50% field capacity, under the same growth conditions as in a; (c) heat stressed, 33/28 °C day/night temperature, under the same growth conditions as in a; and (d) drought + heat stressed, plants at 50% field capacity, 33/28 °C day/night temperature, under the same growth conditions as in (a). Both heat and drought resulted in marked reduction in the rate and duration of seed filling to decrease the final seed size; drought resulted in more damage than heat stress; combined stresses accentuated the damage to seed starch, storage proteins and their fractions, minerals, and several amino acids. Comparison of a drought-tolerant and a drought-sensitive genotype indicated the former type showed significantly less damage to various components of seeds, under drought as well as heat stress suggesting a cross tolerance, which was linked to its (drought tolerant) better capacity to retain more water in leaves and hence more photo-assimilation ability, compared with drought-sensitive genotype.


Asunto(s)
Lens (Planta)/crecimiento & desarrollo , Semillas/crecimiento & desarrollo , Aminoácidos/metabolismo , Deshidratación , Genotipo , Respuesta al Choque Térmico , Lens (Planta)/genética , Lens (Planta)/metabolismo , Hojas de la Planta/metabolismo , Semillas/genética , Semillas/metabolismo
7.
Front Plant Sci ; 8: 1658, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29123532

RESUMEN

Ambient temperatures are predicted to rise in the future owing to several reasons associated with global climate changes. These temperature increases can result in heat stress- a severe threat to crop production in most countries. Legumes are well-known for their impact on agricultural sustainability as well as their nutritional and health benefits. Heat stress imposes challenges for legume crops and has deleterious effects on the morphology, physiology, and reproductive growth of plants. High-temperature stress at the time of the reproductive stage is becoming a severe limitation for production of grain legumes as their cultivation expands to warmer environments and temperature variability increases due to climate change. The reproductive period is vital in the life cycle of all plants and is susceptible to high-temperature stress as various metabolic processes are adversely impacted during this phase, which reduces crop yield. Food legumes exposed to high-temperature stress during reproduction show flower abortion, pollen and ovule infertility, impaired fertilization, and reduced seed filling, leading to smaller seeds and poor yields. Through various breeding techniques, heat tolerance in major legumes can be enhanced to improve performance in the field. Omics approaches unravel different mechanisms underlying thermotolerance, which is imperative to understand the processes of molecular responses toward high-temperature stress.

8.
Appl Biochem Biotechnol ; 183(3): 1093-1110, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28451955

RESUMEN

Three sorghum backgrounds [Atlas, Early Hegari (EH), and Kansas Collier (KC)] and two bmr mutants (bmr6 and bmr12) of each line were evaluated and compared for grain and biomass yield, biomass composition, and 2,3-butanediol production from biomass. The data showed that the bmr6 mutation in EH background led to a significant decrease in stover yield and increase in grain yield, whereas the stover yield was increased by 64% without affecting grain yield in KC background. The bmr mutants had 10 to 25% and 2 to 9% less lignin and structural carbohydrate contents, respectively, and 24 to 93% more non-structural sugars than their parents in all sorghum lines, except EH bmr12. The total fermentable sugars released were 22 to 36% more in bmr mutants than in parents for Atlas and KC, but not for EH. The bmr6 mutation in KC background produced the most promising feedstock, among the evaluated bmr mutants, for 2,3-butanediol production without affecting grain yield, followed by KC bmr12 and Atlas bmr6, but the bmr mutation had an adverse effect in EH background. This indicated that the genetic background of the parent line and type of bmr mutation significantly affect the biomass quality as a feedstock for biochemical production.


Asunto(s)
Biomasa , Biotecnología , Butileno Glicoles/metabolismo , Mutación , Sorghum/genética , Sorghum/metabolismo , Fermentación , Hidrólisis
9.
J Plant Physiol ; 165(2): 192-202, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17498838

RESUMEN

Chloroplast protein synthesis elongation factor, EF-Tu, has been implicated in heat tolerance in maize (Zea mays). Chloroplast EF-Tu is highly conserved, and it is possible that this protein may be of importance to heat tolerance in other species including wheat (Triticum aestivum). In this study, we assessed heat tolerance and determined the relative levels of EF-Tu in mature plants (at flowering stage) of 12 cultivars of winter wheat experiencing a 16-d-long heat treatment (36/30 degrees C, day/night temperature). In addition, we also investigated the expression of EF-Tu in young plants experiencing a short-term heat shock (4h at 43 degrees C). Heat tolerance was assessed by examining the stability of thylakoid membranes, measuring chlorophyll content, and assessing plant growth traits (shoot dry mass, plant height, tiller number, and ear number). In mature plants, relative levels of EF-Tu were determined after 7 d of heat stress. High temperature-induced accumulation of EF-Tu in mature plants of all cultivars, and a group of cultivars that showed greater accumulation of EF-Tu displayed better tolerance to heat stress. Young plants of all cultivars but one did not show significant increases in the relative levels of EF-Tu. The results of the study suggest that EF-Tu protein may play a role in heat tolerance in winter wheat.


Asunto(s)
Cloroplastos/metabolismo , Calor , Factor Tu de Elongación Peptídica/metabolismo , Triticum/metabolismo , Adaptación Fisiológica , Triticum/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...