Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Med Virol ; 96(4): e29601, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38597375

RESUMEN

Coronavirus disease 2019 (COVID-19) associated mucormycosis (CAM) was reported predominantly from India during the second wave of COVID-19  and has a high mortality rate. The present study aims to understand the fungal community composition of the nasopharyngeal region of CAM-infected individuals and compare it with severe COVID-19 patients and healthy controls. The fungal community composition was decoded by analyzing the sequence homology of the internal transcribed spacer-2-(ITS-2) region of metagenomic DNA extracted from the upper respiratory samples. The alpha-diversity indices were found to be significantly altered in CAM patients (p < 0.05). Interestingly, a higher abundance of Candida africana, Candida haemuloni, Starmerella floris, and Starmerella lactiscondensi was observed exclusively in CAM patients. The interindividual changes in mycobiome composition were well supported by beta-diversity analysis (p < 0.05). The current study provides insights into the dysbiosis of the nasal mycobiome during CAM infection. In conclusion, our study shows that severe COVID-19 and CAM are associated with alteration in mycobiome as compared to healthy controls. However, the sequential alteration in the fungal flora which ultimately leads to the development of CAM needs to be addressed by future studies.


Asunto(s)
COVID-19 , Mucormicosis , Micobioma , Humanos , Mucormicosis/epidemiología , Nariz , India/epidemiología
2.
Nat Commun ; 14(1): 4179, 2023 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443151

RESUMEN

Human nuclear receptors (NRs) are a superfamily of ligand-responsive transcription factors that have central roles in cellular function. Their malfunction is linked to numerous diseases, and the ability to modulate their activity with synthetic ligands has yielded 16% of all FDA-approved drugs. NRs regulate distinct gene networks, however they often function from genomic sites that lack known binding motifs. Here, to annotate genomic binding sites of known and unexamined NRs more accurately, we use high-throughput SELEX to comprehensively map DNA binding site preferences of all full-length human NRs, in complex with their ligands. Furthermore, to identify non-obvious binding sites buried in DNA-protein interactomes, we develop MinSeq Find, a search algorithm based on the MinTerm concept from electrical engineering and digital systems design. The resulting MinTerm sequence set (MinSeqs) reveal a constellation of binding sites that more effectively annotate NR-binding profiles in cells. MinSeqs also unmask binding sites created or disrupted by 52,106 single-nucleotide polymorphisms associated with human diseases. By implicating druggable NRs as hidden drivers of multiple human diseases, our results not only reveal new biological roles of NRs, but they also provide a resource for drug-repurposing and precision medicine.


Asunto(s)
Receptores Citoplasmáticos y Nucleares , Factores de Transcripción , Humanos , Ligandos , Receptores Citoplasmáticos y Nucleares/genética , Sitios de Unión/genética , ADN/metabolismo
3.
J Biomol Struct Dyn ; : 1-12, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37288794

RESUMEN

Mucormycosis is a fungal infection of the sinuses, brain and lungs that is the cause of approximately 50% mortality rate despite the available first-line therapy. Glucose-Regulated Protein 78 (GRP78) is already reported to be a novel host receptor that mediates invasion and damage of human endothelial cells by Rhizopus oryzae and Rhizopus delemar, the most common etiologic species of Mucorales. The expression of GRP78 is also regulated by the levels of iron and glucose in the blood. There are several antifungal drugs in the market but they pose a serious side effect to the vital organs of the body. Therefore, there is an immediate need to discover effective drug molecules having increased efficacy with no side effects. With the help of various computational tools, the current study was attempted to determine potential antimucor agents against GRP78. The receptor molecule GRP78 was screened against 8820 known drugs deposited in DrugBank library using high-throughput virtual screening method. Total top 10 compounds were selected based on the binding energies greater than the reference co-crystal molecule. Furthermore, molecular dynamic (MD) simulations using AMBER were performed to calculate the stability of the top-ranked compounds in the active site of GRP78. After extensive computational studies, we propose that two compounds (CID439153 and CID5289104) have inhibitory potency against mucormycosis and can serve as potential drugs that can form the basis of treating mucormycosis disease.Communicated by Ramaswamy H. Sarma.

4.
Ther Adv Vaccines Immunother ; 10: 25151355221115009, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35966176

RESUMEN

Background: COVID-19 infections among severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-vaccinated individuals are of clinical concern, especially in those requiring hospitalization. Such real-world data on ChAdOx1 nCoV-19- and BBV152-vaccinated individuals are scarce. Hence, there is an urgent need to understand their clinical profile and outcomes. Methods: A 1:1 pair-matched study was performed among vaccinated and unvaccinated COVID-19 patients admitted between March 2021 and June 2021 at a tertiary care centre in New Delhi, India. The vaccinated group (received at least one dose of ChAdOx1 nCoV-19 or BBV152) was prospectively followed till discharge or death and matched [for age (±10 years), sex, baseline disease severity and comorbidities] with a retrospective group of unvaccinated patients admitted during the study period. Paired analysis was done to look for clinical outcomes between the two groups. Results: The study included a total of 210 patients, with 105 in each of the vaccinated and unvaccinated groups. In the vaccinated group, 47 (44.8%) and 58 (55.2%) patients had received ChAdOx1 nCoV-19 and BBV152, respectively. However, 73 patients had received one dose and 32 had received two doses of the vaccine. Disease severity was mild in 36.2%, moderate in 31.4% and severe in 32.4%. Two mortalities were reported out of 19 fully vaccinated individuals. All-cause mortality in the vaccinated group was 8.6% (9/105), which was significantly lower than the matched unvaccinated group mortality of 21.9% (23/105), p = 0.007. Vaccination increased the chances of survival (OR = 3.8, 95% CI: 1.42-10.18) compared to the unvaccinated group. Conclusion: In the second wave of the pandemic predominated by delta variant of SARS CoV-2, vaccination reduced all-cause mortality among hospitalized patients, although the results are only preliminary.

5.
Int J Biol Macromol ; 187: 988-998, 2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34324905

RESUMEN

Mucormycosis is a deadly infection which is caused by fungi of the order Mucorales including species belonging to the genus Rhizopus, Mucor, Mycocladus, Rhizomucor, Cunninghamella, and Apophysomyces. Despite antifungal therapy and surgical procedures, the mortality rate of this disease is about 90-100% which is exceptionally high. The hypersensitivity of patients with raised available serum iron indicates that the Mucorales are able to use host iron as a critical factor of virulence. This is because iron happens to be a crucial element playing its role in the growth of cells and development. In this review, we have described Lactoferrin (Lf) as a potential iron-chelator. Lf is a naturally occurring glycoprotein which is expressed in most of the biological fluids. Moreover, Lf possesses exclusive anti-inflammatory effects along with several anti-fungal effects that could prove to be helpful to the pathological physiology of inexorable mucormycosis cases. This literature summarises the biological insights into the Lf being considered as a potential fungistatic agent and an immune regulator. The review also proposes that unique potential of Lf as an iron-chelator can be exploited as the adjunct treatment for mucormycosis infection.


Asunto(s)
Antifúngicos/uso terapéutico , Quelantes del Hierro/uso terapéutico , Hierro/metabolismo , Lactoferrina/uso terapéutico , Mucorales/efectos de los fármacos , Mucormicosis/tratamiento farmacológico , Animales , Antifúngicos/efectos adversos , Interacciones Huésped-Patógeno , Humanos , Quelantes del Hierro/efectos adversos , Lactoferrina/efectos adversos , Mucorales/metabolismo , Mucorales/patogenicidad , Mucormicosis/diagnóstico , Mucormicosis/metabolismo , Mucormicosis/microbiología , Valor Predictivo de las Pruebas , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...