Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 11(1): 1469, 2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-32193393

RESUMEN

Emerging photonic functionalities are mostly governed by the fundamental principle of Lorentz reciprocity. Lifting the constraints imposed by this principle could circumvent deleterious effects that limit the performance of photonic systems. Most efforts to date have been limited to waveguide platforms. Here, we propose and experimentally demonstrate a spatio-temporally modulated metasurface capable of complete violation of Lorentz reciprocity by reflecting an incident beam into far-field radiation in forward scattering, but into near-field surface waves in reverse scattering. These observations are shown both in nonreciprocal beam steering and nonreciprocal focusing. We also demonstrate nonreciprocal behavior of propagative-only waves in the frequency- and momentum-domains, and simultaneously in both. We develop a generalized Bloch-Floquet theory which offers physical insights into Lorentz nonreciprocity for arbitrary spatial phase gradients, and its predictions are in excellent agreement with experiments. Our work opens exciting opportunities in applications where free-space nonreciprocal wave propagation is desired.

2.
J Chem Phys ; 151(17): 174709, 2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31703503

RESUMEN

Hybrid organic-inorganic perovskites have shown great promise for spintronic applications due to their large spin-orbit coupling induced by the Pb and halogen atoms. Particularly, the large observed surface-induced Rashba splitting in CH3NH3PbBr3 indicates efficient spin-current-to-charge-current (StC) conversion, which, however, has not been demonstrated yet. In this work, the StC conversion efficiency in ferromagnet/CH3NH3PbBr3-based devices is studied using the pulsed spin-pumping technique measured by the inverse spin Hall effect. We found that the StC conversion efficiency is anomalous in that it increases at small perovskite layer thickness. This indicates the existence of a surface-dominated StC mechanism such as the inverse Rashba-Edelstein effect. By inserting a thin LiF layer between the ferromagnet and the perovskite film, the StC conversion efficiency is greatly suppressed, validating the existence of a Rashba surface in the CH3NH3PbBr3 film.

3.
Nat Commun ; 10(1): 129, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30631053

RESUMEN

Recently the hybrid organic-inorganic trihalide perovskites have shown remarkable performance as active layers in photovoltaic and other optoelectronic devices. However, their spin characteristic properties have not been fully studied, although due to the relatively large spin-orbit coupling these materials may show great promise for spintronic applications. Here we demonstrate spin-polarized carrier injection into methylammonium lead bromide films from metallic ferromagnetic electrodes in two spintronic-based devices: a 'spin light emitting diode' that results in circularly polarized electroluminescence emission; and a 'vertical spin valve' that shows giant magnetoresistance. In addition, we also apply a magnetic field perpendicular to the injected spins orientation for measuring the 'Hanle effect', from which we obtain a relatively long spin lifetime for the electrically injected carriers. Our measurements initiate the field of hybrid perovskites spin-related optoelectronic applications.

4.
ACS Appl Mater Interfaces ; 10(37): 31813-31823, 2018 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-30192500

RESUMEN

Organic photovoltaic (OPV) cells based on π-conjugated copolymer/fullerene blends are devices with the highest power conversion efficiencies within the class of organic semiconductors. Although a number of image microscopies have been applied to films of π-conjugated copolymers and their fullerene blends, seldom have they been able to detect microscopic defects in the blend films. We have applied multiphoton microscopy (MPM) using a 65 fs laser at 1.56 µm for spectroscopy and mapping of films of various π-conjugated copolymers and their fullerene blends. All pristine copolymer films have shown third harmonic generation (THG) and two-photon or three-photon photoluminescence that could be used for mapping the films with micrometer spatial resolution. Since the fullerenes have much weaker THG efficiency than those of the copolymers, we could readily map the copolymer/fullerene blend films that showed interpenetrating micron-sized grains of the two constituents. In addition, we also found second harmonic generation from various micron-sized defects in the films that are formed during film deposition or light illumination at ambient conditions, which do not possess inversion symmetry. The MPM method is therefore beneficial for organic films and devices for investigating the properties and growth of copolymer/fullerene blends for OPV applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...