Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 19036, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37923897

RESUMEN

To cope with environmental stresses, bacteria have developed different strategies, including the production of small heat shock proteins (sHSP). All sHSPs are described for their role as molecular chaperones. Some of them, like the Lo18 protein synthesized by Oenococcus oeni, also have the particularity of acting as a lipochaperon to maintain membrane fluidity in its optimal state following cellular stresses. Lipochaperon activity is poorly characterized and very little information is available on the domains or amino-acids key to this activity. The aim in this paper is to investigate the importance at the protein structure and function level of four highly conserved residues in sHSP exhibiting lipochaperon activity. Thus, by combining in silico, in vitro and in vivo approaches the importance of three amino-acids present in the core of the protein was shown to maintain both the structure of Lo18 and its functions.


Asunto(s)
Aminoácidos , Proteínas de Choque Térmico Pequeñas , Proteínas de Choque Térmico Pequeñas/metabolismo , Chaperonas Moleculares/metabolismo , Fluidez de la Membrana
3.
Eur Biophys J ; 50(3-4): 313-330, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33792745

RESUMEN

Biophysical quantification of protein interactions is central to unveil the molecular mechanisms of cellular processes. Researchers can choose from a wide panel of biophysical methods that quantify molecular interactions in different ways, including both classical and more novel techniques. We report the outcome of an ARBRE-MOBIEU training school held in June 2019 in Gif-sur-Yvette, France ( https://mosbio.sciencesconf.org/ ). Twenty European students benefited from a week's training with theoretical and practical sessions in six complementary approaches: (1) analytical ultracentrifugation with or without a fluorescence detector system (AUC-FDS), (2) isothermal titration calorimetry (ITC), (3) size exclusion chromatography coupled to multi-angle light scattering (SEC-MALS), (4) bio-layer interferometry (BLI), (5) microscale thermophoresis (MST) and, (6) switchSENSE. They implemented all these methods on two examples of macromolecular interactions with nanomolar affinity: first, a protein-protein interaction between an artificial alphaRep binder, and its target protein, also an alphaRep; second, a protein-DNA interaction between a DNA repair complex, Ku70/Ku80 (hereafter called Ku), and its cognate DNA ligand. We report the approaches used to analyze the two systems under study and thereby showcase application of each of the six techniques. The workshop provided students with improved understanding of the advantages and limitations of different methods, enabling future choices concerning approaches that are most relevant or informative for specific kinds of sample and interaction.


Asunto(s)
Sustancias Macromoleculares/análisis , Calorimetría , ADN , Humanos , Ligandos , Proteínas
5.
Eur Biophys J ; 50(3-4): 389-400, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33772617

RESUMEN

There is currently a large panel of technologies available to address molecular interactions in vitro. Each technology presents individual advantages and drawbacks, and it becomes challenging to choose which technology will be best suited for a molecular interaction of interest. Approaches can be broadly categorized as either microfluidic surface-bound methods (such as Surface Plasmon Resonance (SPR) or switchSENSE) or in-solution methods (such as Isothermal Titration Calorimetry (ITC) or MicroScale Thermophoresis (MST)). In-solution methods are advantageous in terms of sample preparation and ease of use as none of the binding partners are subjected to immobilization. On the other hand, surface-based techniques require only small amounts of immobilized interaction partner and provide off-rate characterization as unbound analytes can be removed from the surface to observe analyte dissociation. Here, a standard operating procedure (SOP) for the switchSENSE method is presented, which aims to guide new users through the process of a switchSENSE measurement, covering sample preparation, instrument and biochip handling as well as data acquisition and analysis. This guide will help researchers decide whether switchSENSE is the right method for their application as well as supporting novice users to get the most information out of a switchSENSE measurement. switchSENSE technology offers the unique advantage of a controlled DNA-based ligand surface within a microfluidic channel which allows the user to distribute specifically up to two different ligand molecules on the surface at a customized density and ratio. The technology offers multi-parameter characterization of binding kinetics, affinity, enzymatic activity, and changes in protein conformation.


Asunto(s)
Resonancia por Plasmón de Superficie , Calorimetría , Cinética , Ligandos , Unión Proteica
6.
Nat Commun ; 10(1): 5357, 2019 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-31767852

RESUMEN

Horizontal gene transfer through natural transformation is a major driver of antibiotic resistance spreading in many pathogenic bacterial species. In the case of Gram-negative bacteria, and in particular of Helicobacter pylori, the mechanisms underlying the handling of the incoming DNA within the periplasm are poorly understood. Here we identify the protein ComH as the periplasmic receptor for the transforming DNA during natural transformation in H. pylori. ComH is a DNA-binding protein required for the import of DNA into the periplasm. Its C-terminal domain displays strong affinity for double-stranded DNA and is sufficient for the accumulation of DNA in the periplasm, but not for DNA internalisation into the cytoplasm. The N-terminal region of the protein allows the interaction of ComH with a periplasmic domain of the inner-membrane channel ComEC, which is known to mediate the translocation of DNA into the cytoplasm. Our results indicate that ComH is involved in the import of DNA into the periplasm and its delivery to the inner membrane translocator ComEC.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo , Transferencia de Gen Horizontal , Helicobacter pylori/metabolismo , Periplasma/metabolismo , Receptores de Superficie Celular/metabolismo , Transformación Bacteriana , Proteínas Bacterianas/genética , Transporte Biológico , ADN/genética , ADN/metabolismo , ADN Bacteriano/genética , Helicobacter pylori/genética , Periplasma/genética , Receptores de Superficie Celular/genética
7.
Nat Commun ; 10(1): 5300, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31757955

RESUMEN

In Myxococcus xanthus, directed movement is controlled by pole-to-pole oscillations of the small GTPase MglA and its GAP MglB. Direction reversals require that MglA is inactivated by MglB, yet paradoxically MglA and MglB are located at opposite poles at reversal initiation. Here we report the complete MglA/MglB structural cycle combined to GAP kinetics and in vivo motility assays, which uncovers that MglA is a three-state GTPase and suggests a molecular mechanism for concerted MglA/MglB relocalizations. We show that MglA has an atypical GTP-bound state (MglA-GTP*) that is refractory to MglB and is re-sensitized by a feedback mechanism operated by MglA-GDP. By identifying and mutating the pole-binding region of MglB, we then provide evidence that the MglA-GTP* state exists in vivo. These data support a model in which MglA-GDP acts as a soluble messenger to convert polar MglA-GTP* into a diffusible MglA-GTP species that re-localizes to the opposite pole during reversals.


Asunto(s)
Proteínas Bacterianas/metabolismo , Movimiento/fisiología , Myxococcus xanthus/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/ultraestructura , Cristalografía por Rayos X , Escherichia coli , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Activadoras de GTPasa/ultraestructura , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Myxococcus xanthus/metabolismo
8.
PLoS One ; 14(2): e0210123, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30753183

RESUMEN

The uptake of zinc, which is vital in trace amounts, is tightly controlled in bacteria. For this control, bacteria of the Streptococcaceae group use a Zn(II)-binding repressor named ZitR in lactococci and AdcR in streptococci, while other bacteria use a Zur protein of the Ferric uptake regulator (Fur) superfamily. ZitR and AdcR proteins, characterized by a winged helix-turn-helix DNA-binding domain, belong to the multiple antibiotic resistance (MarR) superfamily, where they form a specific group of metallo-regulators. Here, one such Zn(II)-responsive repressor, ZitR of Lactococcus lactis subspecies cremoris strain MG1363, is characterized. Size Exclusion Chromatography-coupled to Multi Angle Light Scattering, Circular Dichroism and Isothermal Titration Calorimetry show that purified ZitR is a stable dimer complexed to Zn(II), which is able to bind its two palindromic operator sites on DNA fragments. The crystal structure of ZitR holo-form (Zn(II)4-ZitR2), has been determined at 2.8 Å resolution. ZitR is the fourth member of the MarR metallo-regulator subgroup whose structure has been determined. The folding of ZitR/AdcR metallo-proteins is highly conserved between both subspecies (cremoris or lactis) in the Lactococcus lactis species and between species (Lactococcus lactis and Streptococcus pneumoniae or pyogenes) in the Streptococcaceae group. It is also similar to the folding of other MarR members, especially in the DNA-binding domain. Our study contributes to better understand the biochemical and structural properties of metallo-regulators in the MarR superfamily.


Asunto(s)
Proteínas Bacterianas/metabolismo , Lactococcus lactis/metabolismo , Proteínas Represoras/metabolismo , Zinc/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Sitios de Unión , Cristalografía por Rayos X , Lactococcus lactis/química , Modelos Moleculares , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Proteínas Represoras/química
9.
Microb Cell Fact ; 14: 104, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-26178240

RESUMEN

BACKGROUND: Lactococcus lactis, a lactic acid bacterium traditionally used to ferment milk and manufacture cheeses, is also, in the biotechnology field, an interesting host to produce proteins of medical interest, as it is "Generally Recognized As Safe". Furthermore, as L. lactis naturally secretes only one major endogenous protein (Usp45), the secretion of heterologous proteins in this species facilitates their purification from a protein-poor culture medium. Here, we developed and optimized protein production and secretion in L. lactis to obtain proteins of high quality, both correctly folded and pure to a high extent. As proteins to be produced, we chose the two transmembrane members of the HtrA protease family in Staphylococcus aureus, an important extra-cellular pathogen, as these putative surface-exposed antigens could constitute good targets for vaccine development. RESULTS: A recombinant ORF encoding a C-terminal, soluble, proteolytically inactive and tagged form of each staphylococcal HtrA protein was cloned into a lactococcal expression-secretion vector. After growth and induction of recombinant gene expression, L. lactis was able to produce and secrete each recombinant rHtrA protein as a stable form that accumulated in the culture medium in similar amounts as the naturally secreted endogenous protein, Usp45. L. lactis growth in fermenters, in particular in a rich optimized medium, led to higher yields for each rHtrA protein. Protein purification from the lactococcal culture medium was easily achieved in one step and allowed recovery of highly pure and stable proteins whose identity was confirmed by mass spectrometry. Although rHtrA proteins were monomeric, they displayed the same secondary structure content, thermal stability and chaperone activity as many other HtrA family members, indicating that they were correctly folded. rHtrA protein immunogenicity was established in mice. The raised polyclonal antibodies allowed studying the expression and subcellular localization of wild type proteins in S. aureus: although both proteins were expressed, only HtrA1 was found to be, as predicted, exposed at the staphylococcal cell surface suggesting that it could be a better candidate for vaccine development. CONCLUSIONS: In this study, an efficient process was developed to produce and secrete putative staphylococcal surface antigens in L. lactis and to purify them to homogeneity in one step from the culture supernatant. This allowed recovering fully folded, stable and pure proteins which constitute promising vaccine candidates to be tested for protection against staphylococcal infection. L. lactis thus proved to be an efficient and competitive cell factory to produce proteins of high quality for medical applications.


Asunto(s)
Antígenos Bacterianos/química , Proteínas Bacterianas/química , Vacunas Bacterianas/química , Lactococcus lactis/genética , Péptido Hidrolasas/química , Staphylococcus aureus/enzimología , Animales , Antígenos Bacterianos/genética , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/aislamiento & purificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/aislamiento & purificación , Vacunas Bacterianas/genética , Vacunas Bacterianas/inmunología , Humanos , Lactococcus lactis/metabolismo , Ratones , Péptido Hidrolasas/genética , Péptido Hidrolasas/inmunología , Péptido Hidrolasas/aislamiento & purificación , Pliegue de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Infecciones Estafilocócicas/inmunología , Infecciones Estafilocócicas/microbiología , Infecciones Estafilocócicas/prevención & control , Staphylococcus aureus/química , Staphylococcus aureus/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA