Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Intervalo de año de publicación
1.
Sci Rep ; 14(1): 8446, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600186

RESUMEN

Acting as a goalkeeper in a video-game, a participant is asked to predict the successive choices of the penalty taker. The sequence of choices of the penalty taker is generated by a stochastic chain with memory of variable length. It has been conjectured that the probability distribution of the response times is a function of the specific sequence of past choices governing the algorithm used by the penalty taker to make his choice at each step. We found empirical evidence that besides this dependence, the distribution of the response times depends also on the success or failure of the previous prediction made by the participant. Moreover, we found statistical evidence that this dependence propagates up to two steps forward after the prediction failure.

2.
Front Neurosci ; 17: 1221777, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37609451

RESUMEN

Background: Interactions between the somatosensory and motor cortices are of fundamental importance for motor control. Although physically distant, face and hand representations are side by side in the sensorimotor cortex and interact functionally. Traumatic brachial plexus injury (TBPI) interferes with upper limb sensorimotor function, causes bilateral cortical reorganization, and is associated with chronic pain. Thus, TBPI may affect sensorimotor interactions between face and hand representations. Objective: The aim of this study was to investigate changes in hand-hand and face-hand sensorimotor integration in TBPI patients using an afferent inhibition (AI) paradigm. Method: The experimental design consisted of electrical stimulation (ES) applied to the hand or face followed by transcranial magnetic stimulation (TMS) to the primary motor cortex to activate a hand muscle representation. In the AI paradigm, the motor evoked potential (MEP) in a target muscle is significantly reduced when preceded by an ES at short-latency (SAI) or long-latency (LAI) interstimulus intervals. We tested 18 healthy adults (control group, CG), evaluated on the dominant upper limb, and nine TBPI patients, evaluated on the injured or the uninjured limb. A detailed clinical evaluation complemented the physiological investigation. Results: Although hand-hand SAI was present in both the CG and the TBPI groups, hand-hand LAI was present in the CG only. Moreover, less AI was observed in TBPI patients than the CG both for face-hand SAI and LAI. Conclusion: Our results indicate that sensorimotor integration involving both hand and face sensorimotor representations is affected by TBPI.

3.
Scand J Med Sci Sports ; 33(12): 2524-2533, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37642219

RESUMEN

The neurophysiological mechanisms underlying muscle force control for different wrist postures still need to be better understood. To further elucidate these mechanisms, the present study aimed to investigate the effects of wrist posture on the corticospinal excitability by transcranial magnetic stimulation (TMS) of extrinsic (flexor [FCR] and extensor carpi radialis [ECR]) and intrinsic (flexor pollicis brevis (FPB)) muscles at rest and during a submaximal handgrip strength task. Fourteen subjects (24.06 ± 2.28 years) without neurological or motor disorders were included. We assessed how the wrist posture (neutral: 0°; flexed: +45°; extended: -45°) affects maximal handgrip strength (HGSmax ) and the motor evoked potentials (MEP) amplitudes during rest and active muscle contractions. HGSmax was higher at 0° (133%) than at -45° (93.6%; p < 0.001) and +45° (73.9%; p < 0.001). MEP amplitudes were higher for the FCR at +45° (83.6%) than at -45° (45.2%; p = 0.019) and at +45° (156%; p < 0.001) and 0° (146%; p = 0.014) than at -45° (106%) at rest and active condition, respectively. Regarding the ECR, the MEP amplitudes were higher at -45° (113%) than at +45° (60.8%; p < 0.001) and 0° (72.6%; p = 0.008), and at -45° (138%) than +45° (96.7%; p = 0.007) also at rest and active conditions, respectively. In contrast, the FPB did not reveal any difference among wrist postures and conditions. Although extrinsic and intrinsic hand muscles exhibit overlapping cortical representations and partially share the same innervation, they can be modulated differently depending on the biomechanical constraints.


Asunto(s)
Fuerza de la Mano , Músculo Esquelético , Humanos , Electromiografía , Fuerza de la Mano/fisiología , Músculo Esquelético/fisiología , Muñeca/fisiología , Extremidad Superior , Contracción Muscular/fisiología , Potenciales Evocados Motores/fisiología , Estimulación Magnética Transcraneal
4.
Hum Brain Mapp ; 44(5): 2039-2049, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36661404

RESUMEN

Cross-modal plasticity in blind individuals has been reported over the past decades showing that nonvisual information is carried and processed by "visual" brain structures. However, despite multiple efforts, the structural underpinnings of cross-modal plasticity in congenitally blind individuals remain unclear. We mapped thalamocortical connectivity and assessed the integrity of white matter of 10 congenitally blind individuals and 10 sighted controls. We hypothesized an aberrant thalamocortical pattern of connectivity taking place in the absence of visual stimuli from birth as a potential mechanism of cross-modal plasticity. In addition to the impaired microstructure of visual white matter bundles, we observed structural connectivity changes between the thalamus and occipital and temporal cortices. Specifically, the thalamic territory dedicated to connections with the occipital cortex was smaller and displayed weaker connectivity in congenitally blind individuals, whereas those connecting with the temporal cortex showed greater volume and increased connectivity. The abnormal pattern of thalamocortical connectivity included the lateral and medial geniculate nuclei and the pulvinar nucleus. For the first time in humans, a remapping of structural thalamocortical connections involving both unimodal and multimodal thalamic nuclei has been demonstrated, shedding light on the possible mechanisms of cross-modal plasticity in humans. The present findings may help understand the functional adaptations commonly observed in congenitally blind individuals.


Asunto(s)
Ceguera , Lóbulo Occipital , Humanos , Ceguera/diagnóstico por imagen , Tálamo/diagnóstico por imagen , Lóbulo Temporal , Cuerpos Geniculados
5.
Front Hum Neurosci ; 16: 944638, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36277047

RESUMEN

Background: Traumatic brachial plexus injury (TBPI) causes a sensorimotor deficit in upper limb (UL) movements. Objective: Our aim was to investigate the arm-forearm coordination of both the injured and uninjured UL of TBPI subjects. Methods: TBPI participants (n = 13) and controls (n = 10) matched in age, gender, and anthropometric characteristics were recruited. Kinematics from the shoulder, elbow, wrist, and index finger markers were collected, while upstanding participants transported a cup to their mouth and returned the UL to a starting position. The UL coordination was measured through the relative phase (RP) between arm and forearm phase angles and analyzed as a function of the hand kinematics. Results: For all participants, the hand transport had a shorter time to peak velocity (p < 0.01) compared to the return. Also, for the control and the uninjured TBPI UL, the RP showed a coordination pattern that favored forearm movements in the peak velocity of the transport phase (p < 0.001). TBPI participants' injured UL showed a longer movement duration in comparison to controls (p < 0.05), but no differences in peak velocity, time to peak velocity, and trajectory length, indicating preserved hand kinematics. The RP of the injured UL revealed altered coordination in favor of arm movements compared to controls and the uninjured UL (p < 0.001). Finally, TBPI participants' uninjured UL showed altered control of arm and forearm phase angles during the deceleration of hand movements compared to controls (p < 0.05). Conclusion: These results suggest that UL coordination is reorganized after a TBPI so as to preserve hand kinematics.

6.
Front Psychol ; 13: 817699, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35465505

RESUMEN

Proximity and interpersonal contact are prominent components of social connection. Giving affective touch to others is fundamental for human bonding. This brief report presents preliminary results from a pilot study. It explores if exposure to bonding scenes impacts the activity of specific muscles related to physical interaction. Fingers flexion is a very important component when performing most actions of affectionate contact. We explored the visuo-motor affective interplay by priming participants with bonding scenes and assessing the electromyographic activity of the fingers flexor muscle, in the absence of any overt movements. Photographs of dyads in social interaction and of the same dyads not interacting were employed. We examined the effects upon the electromyographical activity: (i) during the passive exposure to pictures, and (ii) during picture offset and when expecting the signal to perform a fingers flexion task. Interacting dyads compared to matched non-interacting dyads increased electromyographic activity of the fingers flexor muscle in both contexts. Specific capture of visual bonding cues at the level of visual cortex had been described in the literature. Here we showed that the neural processing of visual bonding cues reaches the fingers flexor muscle. Besides, previous visualization of bonding cues enhanced background electromyographic activity during motor preparation to perform the fingers flexion task, which might reflect a sustained leakage of central motor activity downstream leading to increase in firing of the respective motor neurons. These data suggest, at the effector level, an implicit visuo-motor connection in which social interaction cues evoke intrinsic dispositions toward affectionate social behavior.

7.
Front Hum Neurosci ; 15: 777776, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34955793

RESUMEN

Background: Traumatic brachial plexus injury (TBPI) typically causes sensory, motor and autonomic deficits of the affected upper limb. Recent studies have suggested that a unilateral TBPI can also affect the cortical representations associated to the uninjured limb. Objective: To investigate the kinematic features of the uninjured upper limb in participants with TBPI. Methods: Eleven participants with unilateral TBPI and twelve healthy controls matched in gender, age and anthropometric characteristics were recruited. Kinematic parameters collected from the index finger marker were measured while participants performed a free-endpoint whole-body reaching task and a cup-to-mouth task with the uninjured upper limb in a standing position. Results: For the whole-body reaching task, lower time to peak velocity (p = 0.01), lower peak of velocity (p = 0.003), greater movement duration (p = 0.04) and shorter trajectory length (p = 0.01) were observed in the TBPI group compared to the control group. For the cup-to-mouth task, only a lower time to peak velocity was found for the TBPI group compared to the control group (p = 0.02). Interestingly, no differences between groups were observed for the finger endpoint height parameter in either of the tasks. Taken together, these results suggest that TBPI leads to a higher cost for motor planning when it comes to movements of the uninjured limb as compared to healthy participants. This cost is even higher in a task with a greater postural balance challenge. Conclusion: This study expands the current knowledge on bilateral sensorimotor alterations after unilateral TBPI and should guide rehabilitation after a peripheral injury.

8.
Neurocase ; 27(2): 169-177, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33779507

RESUMEN

The present study aims at the cerebellum's role in prediction mechanisms triggered by action observation. Five cerebellar patients and six age-paired control subjects were asked to estimate the occluded end point position of the shoulder's trajectories in Sit-to-Stand (STS) or Back-to-Sit (BTS) conditions, following or not biological rules. Contrarily to the control group, the prediction accuracy of the end point position in cerebellar patients did not depend on biological rules. Interestingly, both groups presented similar results when estimating the vanishing position of the target. Taken together, these results suggest that cerebellar damage affectsthe capacity of predicting upcoming actions by observation.


Asunto(s)
Cerebelo , Movimiento , Humanos , Movimiento (Física)
9.
Neural Plast ; 2021: 6649135, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33688339

RESUMEN

Predicting upcoming sensorimotor events means creating forward estimates of the body and the surrounding world. This ability is a fundamental aspect of skilled motor behavior and requires an accurate and constantly updated representation of the body and the environment. To test whether these prediction mechanisms could be affected by a peripheral injury, we employed an action observation and electroencephalogram (EEG) paradigm to assess the occurrence of prediction markers in anticipation of observed sensorimotor events in healthy and brachial plexus injury (BPI) participants. Nine healthy subjects and six BPI patients watched a series of video clips showing an actor's hand and a colored ball in an egocentric perspective. The color of the ball indicated whether the hand would grasp it (hand movement), or the ball would roll toward the hand and touch it (ball movement), or no event would occur (no movement). In healthy participants, we expected to find distinct electroencephalographic activation patterns (EEG signatures) specific to the prediction of the occurrence of each of these situations. Cluster analysis from EEG signals recorded from electrodes placed over the sensorimotor cortex of control participants showed that predicting either an upcoming hand movement or the occurrence of a tactile event yielded specific neural signatures. In BPI participants, the EEG signals from the sensorimotor cortex contralateral to the dominant hand in the hand movement condition were different compared to the other conditions. Furthermore, there were no differences between ball movement and no movement conditions in the sensorimotor cortex contralateral to the dominant hand, suggesting that BPI blurred specifically the ability to predict upcoming tactile events for the dominant hand. These results highlight the role of the sensorimotor cortex in creating estimates of both actions and tactile interactions in the space around the body and suggest plastic effects on prediction coding following peripheral sensorimotor loss.


Asunto(s)
Mano/fisiología , Movimiento/fisiología , Corteza Sensoriomotora/fisiología , Percepción Espacial/fisiología , Tacto/fisiología , Adulto , Mapeo Encefálico/métodos , Electroencefalografía/métodos , Femenino , Fuerza de la Mano/fisiología , Humanos , Masculino , Percepción del Tacto/fisiología , Adulto Joven
10.
Sci Rep ; 11(1): 3520, 2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33568773

RESUMEN

Using a new probabilistic approach we model the relationship between sequences of auditory stimuli generated by stochastic chains and the electroencephalographic (EEG) data acquired while 19 participants were exposed to those stimuli. The structure of the chains generating the stimuli are characterized by rooted and labeled trees whose leaves, henceforth called contexts, represent the sequences of past stimuli governing the choice of the next stimulus. A classical conjecture claims that the brain assigns probabilistic models to samples of stimuli. If this is true, then the context tree generating the sequence of stimuli should be encoded in the brain activity. Using an innovative statistical procedure we show that this context tree can effectively be extracted from the EEG data, thus giving support to the classical conjecture.


Asunto(s)
Estimulación Acústica , Encéfalo/fisiología , Electroencefalografía , Aprendizaje/fisiología , Estimulación Acústica/métodos , Adulto , Algoritmos , Electroencefalografía/métodos , Femenino , Humanos , Masculino , Modelos Estadísticos , Adulto Joven
11.
Front Neuroinform ; 15: 768615, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35069167

RESUMEN

Computational tools can transform the manner by which neuroscientists perform their experiments. More than helping researchers to manage the complexity of experimental data, these tools can increase the value of experiments by enabling reproducibility and supporting the sharing and reuse of data. Despite the remarkable advances made in the Neuroinformatics field in recent years, there is still a lack of open-source computational tools to cope with the heterogeneity and volume of neuroscientific data and the related metadata that needs to be collected during an experiment and stored for posterior analysis. In this work, we present the Neuroscience Experiments System (NES), a free software to assist researchers in data collecting routines of clinical, electrophysiological, and behavioral experiments. NES enables researchers to efficiently perform the management of their experimental data in a secure and user-friendly environment, providing a unified repository for the experimental data of an entire research group. Furthermore, its modular software architecture is aligned with several initiatives of the neuroscience community and promotes standardized data formats for experiments and analysis reporting.

12.
Front Neurol ; 10: 872, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31456738

RESUMEN

Unilateral brachial plexus injury (BPI) impairs sensory and motor functions of the upper limb. This study aimed to map in detail brachial plexus sensory impairment both in the injured and the uninjured upper limb. Touch sensation was measured through Semmes-Weinstein monofilaments at the autonomous regions of the brachial plexus nerves, hereafter called points of exclusive innervation (PEIs). Seventeen BPI patients (31.35 years±6.9 SD) and 14 age-matched healthy controls (27.57 years±5.8 SD) were tested bilaterally at six selected PEIs (axillary, musculocutaneous, median, radial, ulnar, and medial antebrachial cutaneous [MABC]). As expected, the comparison between the control group and the brachial plexus patients' injured limb showed a robust difference for all PEIs (p ≤ 0.001). Moreover, the comparison between the control group and the brachial plexus uninjured limb revealed a difference for the median (p = 0.0074), radial (p = 0.0185), ulnar (p = 0.0404), and MABC (p = 0.0328) PEIs. After splitting the sample into two groups with respect to the dominance of the injured limb, higher threshold values were found for the uninjured side when it occurred in the right dominant limb compared to the control group at the median (p = 0.0456), radial (p = 0.0096), and MABC (p = 0.0078) PEIs. This effect was absent for the left, non-dominant arm. To assess the effect of the severity of sensory deficits observed in the injured limb upon the alterations of the uninjured limb, a K-means clustering algorithm (k = 2) was applied resulting in two groups with less or more severe sensory impairment. The less severely affected patients presented higher thresholds at the median (p = 0.0189), radial (p = 0.0081), ulnar (p = 0.0253), and MABC (p = 0.0187) PEIs in the uninjured limb in comparison with the control group, whereas higher thresholds at the uninjured limb were found only for the median PEI (p = 0.0457) in the more severely affected group. In conclusion, an expressive reduction in touch threshold was found for the injured limb allowing a precise mapping of the impairment caused by the BPI. Crucially, BPI also led to reduced tactile threshold in specific PEIs in the uninjured upper limb. These new findings suggest a superordinate model of representational plasticity occurring bilaterally in the brain after a unilateral peripheral injury.

14.
Front Hum Neurosci ; 11: 217, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28533748

RESUMEN

Objective: As highly social creatures, human beings rely part of their skills of identifying, interpreting, and predicting the actions of others on the ability of perceiving biological motion. In the present study, we aim to investigate the electroencephalographic (EEG) cerebral dynamics involved in the coding of postural control and examine whether upright stance would be codified through the activation of the temporal-parietal cortical network classically enrolled in the coding of biological motion. Design: We registered the EEG activity of 12 volunteers while they passively watched point light displays (PLD) depicting quiet stable (QB) and an unstable (UB) postural situations and their respective scrambled controls (QS and US). In a pretest, 13 volunteers evaluated the level of stability of our two biological stimuli through a stability scale. Results: Contrasting QB vs. QS revealed a typical ERP difference in the right temporal-parietal region at an early 200-300 ms time window. Furthermore, when contrasting the two biological postural conditions, UB vs. QB, we found a higher positivity in the 400-600 ms time window for the UB condition in central-parietal electrodes, lateralized to the right hemisphere. Conclusions: These results suggest that PLDs depicting postural adjustments are coded in the brain as biological motion, and that their viewing recruit similar networks with those engaged in postural stability control. Additionally, higher order cognitive processes appear to be engaged in the identification of the postural instability level. Disentangling the EEG dynamics during the observation of postural adjustments could be very useful for further understanding the neural mechanisms underlying postural control.

15.
Exp Brain Res ; 235(2): 437-446, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27770165

RESUMEN

Loss of vision is well known to affect postural control in blind subjects. This effect has classically been framed in terms of deficit or compensation depending on whether body sway increases or decreases in comparison with that of sighted subjects with the eyes open. However, studies have shown that postural responses can be modulated by the context and that changes in postural sway may not necessarily mean a worsened or improved postural control. The goal of our study was to test whether balance is affected by the context in blind subjects. Additional to the quantification of center of pressure (COP) displacement, measurements of body motion (COG) and the correspondent net neuromuscular response (COP-COG) were evaluated in anterior-posterior and medial-lateral directions. Thirty-eight completely blind and thirty-two sighted subjects participated of this study. The volunteers were asked to stand barefoot on a force platform for 60 s in two different conditions: feet apart and feet together. Sighted participants performed the tests with both the eyes open and eyes closed. Results showed that the COP-COG displacements in the blind group were greater than those of the sighted group with eyes open in almost all conditions tested, but not in eyes closed condition. However, the COP and COG results confirmed that the postural responses were context dependent. Together these results suggest that total visual loss does not just lead to a balance deficit or compensation, but to a specific postural signature that might imply in enhancing COP, COG and/or COP-COG in specific postural conditions.


Asunto(s)
Ceguera/complicaciones , Equilibrio Postural/fisiología , Postura/fisiología , Trastornos de la Sensación/etiología , Adolescente , Adulto , Femenino , Humanos , Masculino , Movimiento (Física) , Orientación/fisiología , Presión , Estadísticas no Paramétricas , Adulto Joven
16.
Front Hum Neurosci ; 10: 434, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27625602

RESUMEN

The motor system is recruited whenever one executes an action as well as when one observes the same action being executed by others. Although it is well established that emotion modulates the motor system, the effect of observing other individuals acting in an emotional context is particularly elusive. The main aim of this study was to investigate the effect induced by the observation of grasping directed to emotion-laden objects upon corticospinal excitability (CSE). Participants classified video-clips depicting the right-hand of an actor grasping emotion-laden objects. Twenty video-clips differing in terms of valence but balanced in arousal level were selected. Motor evoked potentials (MEPs) were then recorded from the first dorsal interosseous using transcranial magnetic stimulation (TMS) while the participants observed the selected emotional video-clips. During the video-clip presentation, TMS pulses were randomly applied at one of two different time points of grasping: (1) maximum grip aperture, and (2) object contact time. CSE was higher during the observation of grasping directed to unpleasant objects compared to pleasant ones. These results indicate that when someone observes an action of grasping directed to emotion-laden objects, the effect of the object valence promotes a specific modulation over the motor system.

17.
Exp Brain Res ; 234(9): 2585-94, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27161552

RESUMEN

It has been suggested that tactile perception becomes less acute during movement to optimize motor control and to prevent an overload of afferent information generated during action. This empirical phenomenon, known as "tactile gating effect," has been associated with mechanisms of sensory feedback prediction. However, less attention has been given to the tactile attenuation effect during the observation of an action. The aim of this study was to investigate whether and how the observation of a goal-directed action influences tactile perception as during overt action. In a first experiment, we recorded vocal reaction times (RTs) of participants to tactile stimulations during the observation of a reach-to-grasp action. The stimulations were delivered on different body parts that could be either congruent or incongruent with the observed effector (the right hand and the right leg, respectively). The tactile stimulation was contrasted with a no body-related stimulation (an auditory beep). We found increased RTs for tactile congruent stimuli compared to both tactile incongruent and auditory stimuli. This effect was reported only during the observation of the reaching phase, whereas RTs were not modulated during the grasping phase. A tactile two-alternative forced-choice (2AFC) discrimination task was then conducted in order to quantify the changes in tactile sensitivity during the observation of the same goal-directed actions. In agreement with the first experiment, the tactile perceived intensity was reduced only during the reaching phase. These results suggest that tactile processing during action observation relies on a process similar to that occurring during action execution.


Asunto(s)
Atención/fisiología , Desempeño Psicomotor/fisiología , Percepción del Tacto/fisiología , Adulto , Femenino , Mano/fisiología , Fuerza de la Mano , Humanos , Masculino , Movimiento/fisiología , Tiempo de Reacción/fisiología , Percepción Espacial , Tacto/fisiología , Adulto Joven
18.
Neural Plast ; 2016: 3034963, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26881102

RESUMEN

Somatosensory electrical stimulation (SES) has been proposed as an approach to treat patients with sensory-motor impairment such as spasticity. However, there is still no consensus regarding which would be the adequate SES parameters to treat those deficits. Therefore, the aim of this study was to evaluate the effects of applying SES over the forearm muscles at four different frequencies of stimulation (3, 30, 150, and 300 Hz) and in two intervals of time (5' and 30') by means of transcranial magnetic stimulation and Hoffmann's reflex (H-reflex) in healthy volunteers (Experiments I and II). A group of stroke patients (Experiment III) was also preliminary evaluated to ascertain SES effects at a low frequency (3 Hz) applied for 30' over the forearm spastic flexors muscles by measuring the wrist joint passive torque. Motor evoked potentials and the H-reflex were collected from different forearm and hand muscles immediately before and after SES and up to 5' (Experiment I) and 10' (Experiments I and II) later. None of the investigated frequencies of SES was able to operate as a key in switching modulatory effects in the central nervous system of healthy volunteers and stroke patients with spasticity.


Asunto(s)
Potenciales Evocados Motores/fisiología , Potenciales Evocados Somatosensoriales/fisiología , Espasticidad Muscular/diagnóstico , Tractos Piramidales/fisiología , Accidente Cerebrovascular/diagnóstico , Adulto , Estimulación Eléctrica/métodos , Femenino , Reflejo H/fisiología , Voluntarios Sanos , Humanos , Masculino , Espasticidad Muscular/complicaciones , Espasticidad Muscular/fisiopatología , Proyectos Piloto , Corteza Somatosensorial/fisiología , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/fisiopatología , Adulto Joven
19.
Behav Brain Res ; 290: 197-200, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25975175

RESUMEN

Several studies support the idea that motion inference is strongly motor dependent. In the present study, we address the role of biomechanical constraints in motion prediction and how this implicit knowledge can interfere in a spatial prediction task. Right-handed (RHS) and left-handed subjects (LHS) had to estimate the final position of a horizontal arm movement in which the final part of the trajectory was hidden. Our study highlighted a direction effect: end point prediction accuracy was better to infer the final position of horizontal motion directed toward the median line of human body. This finding suggests that the spatial prediction of end point is mapped onto implicit biomechanical knowledge such as joint limitation. Accordingly, motor repertoires are embodied into spatial prediction tasks.


Asunto(s)
Brazo/fisiología , Percepción de Movimiento/fisiología , Actividad Motora/fisiología , Desempeño Psicomotor/fisiología , Percepción Espacial/fisiología , Percepción Visual/fisiología , Adulto , Fenómenos Biomecánicos , Femenino , Humanos , Masculino , Adulto Joven
20.
Front Psychol ; 6: 16, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25674068

RESUMEN

It is assumed that social bonds in humans have consequences for virtually all aspects of behavior. Social touch-based contact, particularly hand caressing, plays an important role in social bonding. Pre-programmed neural circuits likely support actions (or predispositions to act) toward caressing contacts. We searched for pre-set motor substrates toward caressing by exposing volunteers to bonding cues and having them gently stroke a very soft cloth, a caress-like movement. The bonding cues were pictures with interacting dyads and the control pictures presented non-interacting dyads. We focused on the readiness potential, an electroencephalographic marker of motor preparation that precedes movement execution. The amplitude of the readiness potential preceding the grasping of pleasant emotional-laden stimuli was previously shown to be reduced compared with neutral ones. Fingers flexor electromyography measured action output. The rationale here is that stroking the soft cloth when previously exposed to bonding cues, a compatible context, would result in smaller amplitudes of readiness potentials, as compared to the context with no such cues. Exposure to the bonding pictures increased subjective feelings of sociability and decreased feelings of isolation. Participants who more frequently engage in mutual caress/groom a "significant other" in daily life initiated the motor preparation earlier, reinforcing the caress-like nature of the task. As hypothesized, readiness potentials preceding the caressing of the soft cloth were significantly reduced under exposure to bonding as compared to control pictures. Furthermore, an increased fingers flexor electromyographic activity was identified under exposure to the former as compared to the latter pictures. The facilitatory effects are likely due to the recruitment of pre-set cortical motor repertoires related to caress-like movements, emphasizing the distinctiveness of neural signatures for caress-like movements.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...