Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
3 Biotech ; 14(1): 3, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38058364

RESUMEN

Xylanases from thermophilic fungi have a wide range of commercial applications in the bioconversion of lignocellulosic materials and biobleaching in the pulp and paper industry. In this study, an endoxylanase from the thermophilic fungus Rasamsonia composticola (XylRc) was produced using waste wheat bran and pretreated sugarcane bagasse (PSB) in solid-state fermentation. The enzyme was purified, biochemically characterized, and used for the saccharification of sugarcane bagasse. XylRc was purified 30.6-fold with a 22% yield. The analysis using sodium dodecyl sulphate-polyacrylamide gel electrophoresis revealed a molecular weight of 53 kDa, with optimal temperature and pH values of 80 °C and 5.5, respectively. Thin-layer chromatography suggests that the enzyme is an endoxylanase and belongs to the glycoside hydrolase 10 family. The enzyme was stimulated by the presence of K+, Ca2+, Mg2+, and Co2+ and remained stable in the presence of the surfactant Triton X-100. XylRc was also stimulated by organic solvents butanol (113%), ethanol (175%), isopropanol (176%), and acetone (185%). The Km and Vmax values for oat spelt and birchwood xylan were 6.7 ± 0.7 mg/mL, 2.3 ± 0.59 mg/mL, 446.7 ± 12.7 µmol/min/mg, and 173.7 ± 6.5 µmol/min/mg, respectively. XylRc was unaffected by different phenolic compounds: ferulic, tannic, cinnamic, benzoic, and coumaric acids at concentrations of 2.5-10 mg/mL. The results of saccharification of PSB showed that supplementation of a commercial enzymatic cocktail (Cellic® CTec2) with XylRc (1:1 w/v) led to an increase in the degree of synergism (DS) in total reducing sugar (1.28) and glucose released (1.05) compared to the control (Cellic® HTec2). In summary, XylRc demonstrated significant potential for applications in lignocellulosic biomass hydrolysis, making it an attractive alternative for producing xylooligosaccharides and xylose, which can serve as precursors for biofuel production.

2.
PLoS One ; 18(3): e0282775, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36897866

RESUMEN

Copernicia alba (Arecaceae) is a palm tree regionally known as carandá that forms large populations and produces abundant fruits, an important food source for the local fauna in Brazilian wetlands. The fruits present morphological variations regarding color, shape and dimensions. In this study fruits of different shapes were collected and processed following routine techniques in plant morphology, and biochemistry analysis of endosperm. (hemicellulose) The fruits isdark, of the berry type, with partially fibrous pericarp, rich in phenolic compounds; the ruminated seed coat also contains phenols; the endosperm, formed of cells with highly thickened, not lignified hemicellulosic walls, stores xyloses, proteins and lipids. The embryo is short and straight. Xylose is the leading sugar of xylan, which can be liberated by hydrolysis with specific enzymes, such as xylanases. This sugar is of interest in several industrial sectors, such as the production of biofuels and xylitol for foods. Excepting depth of seed rumination, C. alba fruits do not have relevant differences in anatomy and classes of substances detected. The fruit yield showed differences associated with its shape, indicating the best utilization. Considering fruit anatomical features and tissue composition, we highlight that the seeds of C. alba have the potential as a new functional food source.


Asunto(s)
Arecaceae , Frutas , Frutas/anatomía & histología , Brasil , Semillas/anatomía & histología , Azúcares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...